Contained in:
Book Chapter

Concept for Enriching NISO-STS Standards with Machine-Readable Requirements and Validation Rules

  • Sven Zentgraf
  • Sherief Ali
  • Markus König

During building project planning, various standards, such as material specifications, value ranges, and construction regulations, must be considered. When analyzing a regulation for its BIM-based use, it must be identified which information can be checked directly or indirectly using a BIM model. The basis for the directly checkable information requirements is the explicit description of object classes, object types, properties, and values. Additionally, complex validation rules can be derived from the standards. These information extractions are mostly performed manually and laboriously on text-based regulatory documents. To provide a better data format, the NISO proposed the Standard Tag Suite (NISO-STS), which is an XML format for publishing and exchanging full-text content and metadata of standards. This paper proposes a concept to enrich standards in NISO-STS format with information requirements and validation rules to provide a machine-interpretable semantic knowledge base for BIM processes. To achieve this, the concept utilizes natural language processing (NLP) methods to extract semantic information from the standards. Furthermore, the paper introduces a workflow to transfer the gathered knowledge into the XML-based standard. This allows the acquired semantic knowledge to be used BIM-based and directly updated in future versions of the standards. To show the applicability of the concept an approach is presented in which the obtained information is stored and used as a queryable knowledge base. The resulting database is used by a querying assistant, in which a user can enter keywords and questions that are translated into SPARQL queries to provide answers for the given input

  • Keywords:
  • Natural Language Processing (NLP),
  • NISO-STS (Standard Tag Suite),
  • Smart Standards,
  • Rule-based model checking,
  • Semantic knowledge,
+ Show More

Sven Zentgraf

Ruhr-University Bochum, Germany - ORCID: 0000-0001-6058-7614

Sherief Ali

Ruhr-University Bochum, Germany

Markus König

Ruhr-University Bochum, Germany - ORCID: 0000-0002-2729-7743

  1. Alani, Y., Dawood, N., Patacas, J., Rodriguez, S., & Dawood, H. (2021). A semantic common model for product data in the water industry. Journal of Information Technology in Construction, 26, 566–590. DOI: 10.36680/j.itcon.2021.030
  2. Beach, T. H., Rezgui, Y., Li, H., & Kasim, T. (2015). A rule-based semantic approach for automated regulatory compliance in the construction sector. Expert Systems with Applications, 42(12), 5219–5231. DOI: 10.1016/j.eswa.2015.02.029
  3. Browne, P. (2009). JBoss Drools business rules. From technologies to solutions. Packt Publ.
  4. Chowdhary, K. R. (2020). Natural Language Processing. In Fundamentals of Artificial Intelligence (pp. 603–649). Springer, New Delhi. DOI: 10.1007/978-81-322-3972-7_19
  5. Czarny, D. A., Diemer, J., Schacht, M., Bülow, G., Noll, M., Lochner, D., Gayko, J., Pervin, J. N., Rauh, P., & Diedrich, C. (06/2021). Scenarios for digitizing standardization and standards. 10787 Berlin. https://www.din.de/resource/blob/801106/0251eb1280a9a97e53285d42d3bf1fea/whitepaper-idis-en-data.pdf
  6. Devlin, J., Chang, M.‑W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, 4171–4186. DOI: 10.48550/arXiv.1810.04805
  7. Eastman, C., Lee, J, Jeong, Y., & Lee, J (2009). Automatic rule-based checking of building designs. Automation in Construction, 18(8), 1011–1033. DOI: 10.1016/j.autcon.2009.07.002
  8. Ehrlinger, L., & Wöß, W. (2016). Towards a Definition of Knowledge Graphs. Joint Proceedings of the Posters and Demos Track of 12th International Conference on Semantic Systems. https://api.semanticscholar.org/CorpusID:8536105
  9. Fauth, J. (2021). Ein handlungsorientiertes Entscheidungsmodell zur Feststellung der Genehmigungsfähigkeit von Bauvorhaben , Bauhaus-Universitätsverlag.
  10. FGSV Verlag GmbH. (2023, August 10). Forschungsgesellschaft für Straßen- und Verkehrswesen. https://www.fgsv-verlag.de/
  11. Forschungsgesellschaft für Straßen- und Verkehrswesen. (2012). Richtlinien für die Standardisierung des Oberbaus von Verkehrsflächen: RStO 12 (Ausg. 2012). FGSV: 499: R1. FGSV-Verl.
  12. Fuchs, S., & Amor, R. (2021). Natural Language Processing for Building Code Interpretation: A Systematic Literature Review. Proceedings of the 38th International Conference of CIB W78.
  13. Hjelseth, E., & Nisbet, N. (2011). Capturing normative constraints by use of the semantic mark-up RASE methodology. In Proceedings of CIB W78-W102 Conference.
  14. ISO 23386 (2020-03). Building information modeling and other digital processes used in construction (ISO 23386). Vernier, Geneva. ISO copyright office.
  15. Kandt, K., & Zentgraf, S (2023). Development of a Python-based NISO-STS document crawler for the creation of NLP pipeline input data. Proceedings of the 34th Forum Bauinformatik, Bochum, Deutschland.
  16. Motik, B., Patel-Schneider, P. F., & Parsia, B. (2012, December 11). OWL 2 Web Ontology Language: Structural Specification and Functional-Style Syntax (Second Edition). https://www.w3.org/TR/2012/REC-owl2-syntax-20121211/
  17. Musen, M. A. (2015). The Protégé Project: A Look Back and a Look Forward. AI Matters, 1(4), 4–12. DOI: 10.1145/2757001.2757003
  18. NISO Standards Tag Suite Working Group (2017-06). ANSI/NISO Z39.102-2017, STS: Standards Tag Suite. Baltimore, MD. National Information Standards Organization.
  19. Schönfelder, P., & König, M (2021). Deep Learning-Based Entity Recognition in Construction Regulatory Documents. Proceedings 38th International Symposium on Automation and Robotics in Construction (ISARC 2021). Advance online publication. DOI: 10.22260/ISARC2021/0054
  20. Schwabe, K., Teizer, J., & König, M (2019). Applying rule-based model-checking to construction site layout planning tasks. Automation in Construction, 97, 205–219. DOI: 10.1016/j.autcon.2018.10.012
  21. Tomczak, A., Berlo, L. v., Krijnen, T., Borrmann, A., & Bolpagni, M. (2022). A review of methods to specify information requirements in digital construction projects. IOP Conference Series: Earth and Environmental Science, 1101(9), 92024. DOI: 10.1088/1755-1315/1101/9/092024
  22. Wessel, C., Humberg, T., Poggenpohl, D., Wenzel, S., Ruhroth, T., & Jürjens, J. (2013). Ontology-based Analysis of Compliance and Regulatory Requirements of Business Processes. In F. Desprez (Ed.), Proceedings of the 3rd International Conference on Cloud Computing and Services Science: Aachen, Germany, 8-10, May 2013. SciTePress.
  23. Zentgraf, S, Hagedorn, P., & König, M (2022). Multi-requirements ontology engineering for automated processing of document-based building codes to linked building data properties. IOP Conference Series: Earth and Environmental Science, 1101(9), 92007. DOI: 10.1088/1755-1315/1101/9/092007
  24. Zhang, R., & El-Gohary, N. (2020). A Machine-Learning Approach for Semantic Matching of Building Codes and Building Information Models (BIMs) for Supporting Automated Code Checking. In H. Rodrigues, G. Morcous, & M. Shehata (Eds.), Sustainable Civil Infrastructures. Recent Research in Sustainable Structures (pp. 64–73). Springer International Publishing. DOI: 10.1007/978-3-030-34216-6_5
  25. Zhang, Z., Ma, L., & Broyd, T. (2022). Towards fully-automated code compliance checking of building regulations: challenges for rule interpretation and representation. European Conference on Computing in Construction EC3. Advance online publication. DOI: 10.35490/EC3.2022.148
  26. Zhou, Y.‑C., Zheng, Z., Lin, J.‑R., & Lu, X.‑Z. (2022). Integrating NLP and context-free grammar for complex rule interpretation towards automated compliance checking. Computers in Industry, 142, 103746. DOI: 10.1016/j.compind.2022.103746
PDF
  • Publication Year: 2023
  • Pages: 718-728

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Concept for Enriching NISO-STS Standards with Machine-Readable Requirements and Validation Rules

Authors

Sven Zentgraf, Sherief Ali, Markus König

DOI

10.36253/979-12-215-0289-3.72

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

55

Fulltext
downloads

53

Views

Export Citation

1,310

Open Access Books

in the Catalogue

1,977

Book Chapters

3,390,281

Fulltext
downloads

4,172

Authors

from 873 Research Institutions

of 64 Nations

63

scientific boards

from 340 Research Institutions

of 43 Nations

1,157

Referees

from 344 Research Institutions

of 37 Nations