Contained in:
Book Chapter

Nonparametric methods for stratified C-sample designs: a case study

  • Rosa Arboretti
  • Riccardo Ceccato
  • Luigi Salmaso

Several parametric and nonparametric methods have been proposed to deal with stratified C-sample problems where the main interest lies in evaluating the presence of a certain treatment effect, but the strata effects cannot be overlooked. Stratified scenarios can be found in several different fields. In this paper we focus on a particular case study from the field of education, addressing a typical stochastic ordering problem in the presence of stratification. We are interested in assessing how the performance of students from different degree programs at the University of Padova change, in terms of university credits and grades, when compared with their entry test results. To address this problem, we propose an extension of the Non-Parametric Combination (NPC) methodology, a permutation-based technique (see Pesarin and Salmaso, 2010), as a valuable tool to improve the data analytics for monitoring University students’ careers at the School of Engineering of the University of Padova. This new procedure indeed allows us to assess the efficacy of the University of Padova’s entry tests in evaluating and selecting future students.

  • Keywords:
  • Nonparametric permutation,
  • Evaluation of Educational Systems,
+ Show More

Rosa Arboretti

University of Padua, Italy - ORCID: 0000-0003-1263-0440

Riccardo Ceccato

University of Padua, Italy - ORCID: 0000-0002-8629-8439

Luigi Salmaso

University of Padua, Italy - ORCID: 0000-0001-6501-1585

  1. Basso, D., Pesarin, F., Salmaso, L., Solari, A. (2009). Permutation tests for stochastic ordering and ANOVA: theory and applications with R. Springer Science & Business Media, New York, (NY). DOI: 10.1007/978-0-387-85956-9_7
  2. Basso, D., Salmaso, L. (2011). A permutation test for umbrella alternatives. Statistics and Computing, 21(1), pp. 45–54. DOI: 10.1007/s11222-009-9145-8
  3. Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: a practical and pow- erful approach to multiple testing. Journal of the Royal statistical society: series B (Methodological), 57(1), pp. 289–300. DOI: 10.1111/j.2517-6161.1995.tb02031.x
  4. Bonnini, S., Prodi, N., Salmaso, L., Visentin, C. (2014). Permutation approaches for stochastic ordering. Communications in Statistics-Theory and Methods, 43(10-12), pp. 2227–2235. DOI: 10.1080/03610926.2013.788888
  5. Finos, L., Salmaso, L., Solari, A. (2007). Conditional inference under simultaneous stochastic ordering constraints. Journal of statistical planning and inference, 137(8), pp. 2633–2641. DOI: 10.1016/j.jspi.2006.04.014
  6. Finos, L., Pesarin, F., Salmaso, L., Solari, A. (2008). Exact inference for multivariate ordered alternatives. Statistical Methods and Applications, 17(2), pp. 195–208. DOI: 10.1007/s10260-007-0052-x
  7. Jonckheere, A. R. (1954). A distribution-free k-sample test against ordered alternatives. Biometrika, 41(1/2), pp. 133–145. DOI: 10.1093/biomet/41.1-2.133
  8. Klingenberg, B., Solari, A., Salmaso, L., Pesarin, F. (2009). Testing marginal homogeneity against stochastic order in multivariate ordinal data. Biometrics, 65(2), pp. 452–462. DOI: 10.1111/j.1541-0420.2008.01067.x
  9. Mann, H. B., Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. The Annals of Mathematical Statistics, 18(1), pp. 50–60. DOI: 10.1214/aoms/1177730491
  10. Neuhäuser, M., Liu, P.-Y., Hothorn, L. A. (1998). Nonparametric tests for trend: Jonckheere’s test, a modification and a maximum test. Biometrical Journal: Journal of Mathematical Methods in Biosciences, 40(8), pp. 899–909. DOI: 10.1002/(sici)1521-4036
  11. Pesarin, F., Salmaso, L. (2010). Permutation tests for complex data: theory, applications and software. John Wiley & Sons, Hoboken, (NJ). DOI: 10.1002/9780470689516
  12. R Core Team (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, (AT).
  13. Shan, G., Young, D., Kang, L. (2014). A New Powerful Nonparametric Rank Test for Ordered Alternative Problem. PloS one, 9(11), pp. 1–10. DOI: 10.1371/journal.pone.0112924
  14. Terpstra, T. J. (1952). The asymptotic normality and consistency of Kendall’s test against trend, when ties are present in one ranking. Indagationes Mathematicae, 14(3), pp. 327–333. DOI: 10.1016/s1385-7258(52)50043-x
PDF
  • Publication Year: 2021
  • Pages: 17-22
  • Content License: CC BY 4.0
  • © 2021 Author(s)

XML
  • Publication Year: 2021
  • Content License: CC BY 4.0
  • © 2021 Author(s)

Chapter Information

Chapter Title

Nonparametric methods for stratified C-sample designs: a case study

Authors

Rosa Arboretti, Riccardo Ceccato, Luigi Salmaso

Language

English

DOI

10.36253/978-88-5518-304-8.05

Peer Reviewed

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

ASA 2021 Statistics and Information Systems for Policy Evaluation

Book Subtitle

Book of short papers of the opening conference

Editors

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Peer Reviewed

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/978-88-5518-304-8

eISBN (pdf)

978-88-5518-304-8

eISBN (xml)

978-88-5518-305-5

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

139

Fulltext
downloads

226

Views

Export Citation

1,301

Open Access Books

in the Catalogue

1,746

Book Chapters

3,161,365

Fulltext
downloads

3,977

Authors

from 819 Research Institutions

of 63 Nations

63

scientific boards

from 340 Research Institutions

of 43 Nations

1,140

Referees

from 342 Research Institutions

of 36 Nations