Contained in:
Book Chapter

Economic valuation of coastal blue carbon stock’s dynamics. An study in NW Spain using land cover transitions and InVEST

  • David Herves-Pardavila
  • Maria Loureiro

Economic valuation of ecosystem services stands as a critical element in comprehending the benefits derived from natural capital and guiding policymakers worldwide. Among these services, the regulation of CO2 fluxes is paramount for climate adaptation and mitigation, prominently observable within Coastal Blue Carbon habitats as salt marshes. We conducted a case study of sea level rise impacts on Galician (NW Spain) salt marshes and their carbon pools from present day to 2050. First, we compute the physical damage from flooding, using a rule-based model to identify land cover transitions. Secondly, Coastal Blue Carbon model of InVEST software is deployed to quantify impacts on carbon sequestration and apply economic valuation through the social cost of carbon. Our results indicate that the consequences of sea-level rise are limited when compared with other processes as erosion, which need to be better understood and modelled. 11 tons of CO2 would be emitted to the atmosphere by 2050 due to sea-level rise, with damages valuated in 37 thousand €. Our approximation is useful for including the monetization of regulating services for cost-benefit analysis and coastal protection.

  • Keywords:
  • Blue Carbon,
  • Marshes,
  • SLAMM,
  • SMRM,
  • InVEST,
+ Show More

David Herves-Pardavila

ECOBAS Interuniversity Research Center, Spain

Maria Loureiro

ECOBAS Interuniversity Research Center, Spain

  1. Natural Capital Project. (2024). InVEST 3.14.1. Retrieved from https://naturalcapitalproject.stanford.edu/software/invest
  2. [Adams, C. A., Andrews J.E., Jickells T (2012). Nitrous oxide and methane fluxes vs. carbon, nitrogen and phosphorous burial in new intertidal and saltmarsh sediments. Science of the Total Environment, 434, 240-251. DOI: 10.1016/j.scitotenv.2011.11.058
  3. [Álvarez-Iglesias P., Rodríguez-Germade I., Rubio B, Rey D., Quintana B., et al. (2016). Monitoring and evolution of highly lead polluted coastal environments: A case study in San Simón Bay (NW Spain). International Journal of Earth and Environmental Sciences. DOI: 10.15344/2456-351x/2016/112
  4. Alvarez-Iglesias, P., and B. Rubio (2009) "Geochemistry of marine sediments from inner Ría de Vigo (NW Spain). Journal of radioanalytical and nuclear chemistry, 281, 247-251. DOI: 10.1007/s10967-009-0107-6
  5. Alvarez-Iglesias P. Q.-A., Quintana B., Rubio B., Pérez-Arlucea M. (2007). Sedimentation rates and trace metal input history in intertidal sediments from San Simón Bay (Ría de Vigo, NW Spain) derived from 210Pb and 137Cs chronology. Journal of Environmental Radioactivity, 98(3), 229-250. DOI: 10.1016/j.jenvrad.2007.05.001
  6. Beaumont, N. J., Jones L., Garbutt A., Hansom J.D., Toberman M. (2014). The value of carbon sequestration and storage in coastal habitats. Estuarine, Coastal and Shelf Science, 137, 32-40. DOI: 10.1016/j.ecss.2013.11.022
  7. Biological Oceanography Group. (2024). Biological Oceanography Group. Retrieved from Biological Oceanography Group: https://gobio.webs.uvigo.es/en/home/
  8. Boorman, L. A. (1999). Salt marshes–present functioning and future change. Mangroves and salt marshes, 3(4), 227-241. DOI: 10.1023/a:1009998812838
  9. Carnero-Bravo V., Sanchez-Cabeza J.-A., Ruiz-Fernández A. C., Merino-Ibarra M., Corcho-Alvarado J. A., Sahli H., Hélie J.-F., Preda M., Zavala-Hidalgo J., Díaz-Asencio M., Hillaire-Marcel C. (2018). Sea level rise sedimentary record and organic carbon fluxes in a low-lying tropical coastal ecosystem. Catena, 162, 421-430. DOI: 10.1016/j.catena.2017.09.016
  10. Centro Nacional de Información Geográfica (CNIG). (2024). Modelo Digital del Terreno con paso de malla de 2 metros (MDT02) de España. Retrieved from Catálogo de Datos y Servicios IDEE: https://www.idee.es/csw-inspire-idee/srv/spa/catalog.search?#/metadata/spaignMDT02
  11. Costanza, R., d'Arge, R., de Groot, R. et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387(6630), 253-260. DOI: 10.1038/387253a0
  12. de Paula Costa M. D., Lovelock C. E., Waltham N. J., Moritsch M. M., Butler D., Power T., Thomas E., Macreadie P. I. (2022). Modelling blue carbon farming opportunities at different spatial scales. Journal of Environmental Management, 9, 113813. DOI: 10.1016/j.jenvman.2021.113813
  13. Dirección Xeral de Sostenibilidade e Paisaxe (Consellería de Medio Ambiente, Territorio e Infraestruturas, Xunta de Galicia). (2011). Plan de Ordenación do Litoral. Retrieved from http://webpol.xunta.gal/web/index.php
  14. Duke N. C., Meynecke J.-O, Dittmann S., Ellison A. M., Anger K., Berger U., Cannicci S. Diele K., Ewel K. C., Field C. D., Koedam N., Lee S. Y., Marchand C., Nordhaus I., Dahdouh-Guebas F. (2007). A world without mangroves? Science, 317(5834), 41-42. DOI: 10.1126/science.317.5834.41b
  15. Emmer I., von Unger M., Needelman B., Crooks S., Emmett-Mattox S. (2015). Coastal blue carbon in practice: a manual for using the VCS methodology for tidal wetland and seagrass restoration. VM0033, 1.
  16. Environmental Protection Agency. (2022). Report on the social cost of greenhouse gases: Estimates incorporating recent scientific advances. Washington, DC: Environmental Protection Agency.
  17. Environmental Protection Agency. (2023). Report on the Social Cost of Greenhouse Gases: Estimates Incorporating Recent Scientific Advances.
  18. Fagherazzi S., Kirwan M. L., Mudd S. M., Guntenspergen G. R., Temmerman S., D'Alpaos A., van de Koppel J., Rybczyk J. M., Reyes E., Craft C., Clough J. (2012). Numerical models of salt marsh evolution: Ecological, geomorphic, and climatic factors. Reviews of Geophysics, 50(1). DOI: 10.1029/2011rg000359
  19. Fox-Kemper B., Hewitt H. T., Xiao C., Aðalgeirsdóttir G., Drijfhout S. S., Edwards T. L., Golledge N. R., Hemer M., Kopp R. E., Krinner G., Mix, A., Notz D., Nowicki S., Nurhati I. S., Ruiz L., Sallée J.-B., Slangen A. B. A., Yu, Y (2021). Ocean, cryosphere and sea level change. Chapter. In Climate Change 2021 – The Physical Science Basis: Working Group I Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1211–1362. Cambridge: Cambridge University Press DOI: 10.1017/9781009157896.011
  20. Herr D., Pidgeon, E., Laffoley, D. (2012). Blue carbon policy framework 2.0: based on the discussion of the International Blue Carbon Policy Working Group. IUCN
  21. Hopkinson C. S., Cai W.-J., Hu X. (2012). Carbon sequestration in wetland dominated coastal systems—a global sink of rapidly diminishing magnitude. Current Opinion in Environmental Sustainability, 4(2), 186-194. DOI: 10.1016/j.cosust.2012.03.005
  22. Howe A. J., Rodríguez J. F., Saco P. M. (2009). Surface evolution and carbon sequestration in disturbed and undisturbed wetland soils of the Hunter estuary, southeast Australia. Estuarine, coastal and shelf science, 84(1), 75-83. DOI: 10.1016/j.ecss.2009.06.006
  23. Inácio M. F., Freitas M.C., Cunha A.G., Antunes C., Leira M., Lopes V., Andrade C., Silva T.A. (2022). Simplified Marsh Response Model (SMRM): A Methodological Approach to Quantify the Evolution of Salt Marshes in a Sea-Level Rise Context. Remote Sensing, 14(14), 3400. DOI: 10.3390/rs14143400
  24. Kacem H. A., Maanan M., Rhinane H (2021). The value of carbon sequestration and storage in coastal habitats areas in North West of Morocco. 240, p. 5. E3S Web of Conferences. DOI: 10.1051/e3sconf/202124001003
  25. Kadaverugu R., Dhyani S., Purohit V., Dasgupta R., Kumar P., Hashimoto S., Pujari P., Biniwale R. (2022). Scenario-based quantification of land-use changes and its impacts on ecosystem services: A case of Bhitarkanika mangrove area, Odisha, India. Journal of Coastal Conservation, 26(4), 30. DOI: 10.1007/s11852-022-00877-0
  26. Kirwan M. L., Megonigal P. (2013). Tidal wetland stability in the face of human impacts and sea-level rise. Nature, 504(7478), 53-60. DOI: 10.1038/nature12856
  27. Kotagama, O. W., Pathirage S., Perera K. A. R. S., Dahanayaka D. D. G. L., Miththapala S., Somarathne S. (2023). Modelling predictive changes of blue carbon due to sea-level rise using InVEST model in Chilaw Lagoon, Sri Lanka. Modeling Earth Systems and Environment, 9(1), 585-599. DOI: 10.1007/s40808-022-01521-4
  28. Lovelock, C. E. (2020). Blue carbon from the past forecasts the future. Science, 368(6495), 1050-1052. DOI: 10.1126/science.abc3735
  29. Ma T. L., Li X., Bai J., Ding S., Zhou F., Cu B. (2019). Four decades' dynamics of coastal blue carbon storage driven by land use/land cover transformation under natural and anthropogenic processes in the Yellow River Delta, China. Science of the Total Environment, 655, 741-750. DOI: 10.1016/j.scitotenv.2018.11.287
  30. Macreadie P. I., Trevathan-Tackett S. M., Skilbeck C. G., Sanderman J., Curlevski N., Jacobsen G., Seymour J. R. (2015). Losses and recovery of organic carbon from a seagrass ecosystem following disturbance. Proceedings of the Royal Society B: Biological Sciences, 282(1817), 20151537. DOI: 10.1098/rspb.2015.1537
  31. Mcleod E. C., Chmura G.L., Bouillon S., Salm R., Björk M., Duarte C.M., Lovelock C.E., Schlesinger W.H., Silliman B.R. (2011). A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering CO2. Frontiers in Ecology and the Environment, 9(10), 552-560. DOI: 10.1890/110004
  32. Minx J. C. et al. (2018). Negative emissions—Part 1: Research landscape and synthesis. Environmental Research Letters, 063001. DOI: 10.1088/1748-9326/aabf9b
  33. Moritsch M. M., Young M., Carnell P., Macreadie P. I., Lovelock C., Nicholson E., Raimondi P.T., Wedding L.M., Ierodiaconou D. (2021). Estimating blue carbon sequestration under coastal management scenarios. Science of The Total Environment, 777, 145962. DOI: 10.1016/j.scitotenv.2021.145962
  34. Murray B. C., Pendleton L., Jenkins W. A., Sifleet S. (2011). Green payments for blue carbon: economic incentives for protecting threatened coastal habitats. Nicholas Institute for Environmental Policy Solutions, Duke University. DOI: 10.1016/j.worlddev.2020.104898
  35. Nahlik A. M., Fennessy M. S. (2016). Carbon storage in US wetlands. Nature Communications, 7(1), 1-9. DOI: 10.1038/ncomms13835
  36. Nelleman C., Corcoran E., Duarte C. M., Valdes L., DeYoung C., Fonseca, L., Grimsditch G. (2009). Blue carbon: the role of healthy oceans in binding carbon: a rapid response assessment. UNEP/Earthprint. DOI: 10.59117/20.500.11822/43142
  37. Pachauri R. K., Reisinger A., eds (2007). Climate change 2007: Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC. DOI: 10.1017/9781009157926
  38. Parkinson R. W., DeLaune R. D., White J. R. (1994). Holocene sea-level rise and the fate of mangrove forests within the wider Caribbean region. Journal of Coastal Research, 10(4), 1077-1086. DOI: 10.2139/ssrn.3967429
  39. Pendleton L. D., Donato D. C., Murray B. C., Crooks S., Jenkins W. A., Sifleet S., Craft C., Fourqurean J. W., Kauffman J. B., Marbà N., Megonigal P., Pidgeon E., Herr D., Gordon D., Baldera A. (2012). Estimating global “blue carbon” emissions from conversion and degradation of vegetated coastal ecosystems. PLOS ONE, 7(9), e43542. DOI: 10.1371/journal.pone.0043542
  40. Pérez-Arlucea M., Álvarez-Iglesias P., Rubio B. (2024). Holocene Evolution of Estuarine and Tidal-flat Sediments in San Simón Bay, Galicia, NW Spain. Journal of Coastal Research, 50(sp1), 163-167. DOI: 10.2112/jcr-si50-032.1
  41. Puertos del Estado. (2023). Prediccion de oleaje, nivel del mar; Boyas y mareografo. Retrieved from https://www.puertos.es/en-us/oceanografia/Pages/portus.aspx DOI: 10.4272/978-84-9745-460-5.ch1
  42. Richmond E., Morse C., Bryan K. (2015). Using InVEST to Model Coastal Blue Carbon in Port Susan Bay, Washington. University of Washington Geography 569 https://depts.washington.edu/mgis/capstone/files/2015_5_Bryan_Morse_Richmond.pdf
  43. Runting R. K., Beyer H.L., Dujardin Y., Lovelock C.E., Bryan B.A., Rhodes J.R. (2018). Reducing risk in reserve selection using Modern Portfolio Theory: Coastal planning under sea‐level rise. Journal of Applied Ecology, 55(5), 2193-2203. DOI: 10.1111/1365-2664.13190
  44. Sapkota Y., White J. R. (2019). Marsh edge erosion and associated carbon dynamics in coastal Louisiana: A proxy for future wetland-dominated coastlines world-wide. Estuarine, Coastal and Shelf Science, 226, 106289. DOI: 10.1016/j.ecss.2019.106289
  45. Tanner K., Strong A.L. (2023). Assessing the Impact of Future Sea Level Rise on Blue Carbon Ecosystem Services on Long Island, New York. Sustainability, 15(6), 4733. DOI: 10.3390/su15064733
  46. Verra (2009). Verra Website. Retrieved from https://verra.org
  47. Warren Pinacle Consulting. (2016). SLAMM 6.2 Technical Documentation. Retrieved from Sea Level Affecting Marshes Model, Version 6.7 beta: https://warrenpinnacle.com/prof/SLAMM6/SLAMM_6.7_Technical_Documentation.pdf
  48. Wilson, L. (2012). Global Carbon Emissions and Sinks since 1750. Retrieved from Shrink that Footprint. https://shrinkthatfootprint.com/carbon-emissions-and-sinks/
  49. Wylie L., Sutton-Grier A. E., Moore A. (2016). Keys to successful blue carbon projects: Lessons learned from global case studies. Marine Policy, 65, 76-84. DOI: 10.1016/j.marpol.2015.12.020
PDF
  • Publication Year: 2024
  • Pages: 385-396

XML
  • Publication Year: 2024

Chapter Information

Chapter Title

Economic valuation of coastal blue carbon stock’s dynamics. An study in NW Spain using land cover transitions and InVEST

Authors

David Herves-Pardavila, Maria Loureiro

Language

Italian

DOI

10.36253/979-12-215-0556-6.35

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

Tenth International Symposium Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Book Subtitle

Livorno (Italy) 11th-13th June 2024

Editors

Laura Bonora, Marcantonio Catelani, Matteo De Vincenzi, Giorgio Matteucci

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0556-6

eISBN (pdf)

979-12-215-0556-6

eISBN (xml)

979-12-215-0557-3

Series Title

Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Series E-ISSN

2975-0288

0

Fulltext
downloads

0

Views

Export Citation

1,374

Open Access Books

in the Catalogue

2,545

Book Chapters

4,035,911

Fulltext
downloads

4,923

Authors

from 1036 Research Institutions

of 66 Nations

70

scientific boards

from 375 Research Institutions

of 44 Nations

1,258

Referees

from 383 Research Institutions

of 38 Nations