Contained in:
Book Chapter

Evaluation of Computer Vision-Aided Multimedia Learning in Construction Engineering Education

  • Anthony Yusuf
  • Adedeji Afolabi
  • Abiola Akanmu
  • Johnson Olayiwola

Due to the practice-oriented nature of construction engineering education and barriers associated with physical site visits, videos are invaluable means to expose students to practical curricula content. Prior studies have investigated various design principles of multimedia pedagogical tools to enhance student learning and reduce cognitive load. These design principles and computer vision techniques can afford the design and usage of a multimedia learning environment with annotated content to teach students construction safety practices. Hence, using subjective and objective measures such as self-reported cognitive load, eye tracking metrics and verbal feedback, this study assesses the effectiveness of a computer vision-aided multimedia learning environment as well as examines variations across students’ demographics. Students were exposed to both annotated and unannotated versions of the learning environment. The annotated version of the learning environment was considered more effective in triggering students’ attention to learning content, but higher cognitive load levels were reported by participants. The same demographic groups that dwelled longer and on more annotated areas of interest also reported higher overall cognitive load. Keeping with individual differences principle of multimedia learning, demographic variations in participants' cognitive load and effectiveness of the learning environment were reported. The study provides implications for instructors in construction engineering programs on effective use of computer vision-aided annotated videos as instructional materials. This study could serve as a benchmark for future studies on artificial intelligence techniques for signaling in multimedia learning. This study reveals the affordances of computer vision-aided multimedia learning in construction engineering education and the need for adaptation of multimedia learning tools to students’ demographics

  • Keywords:
  • Computer vision,
  • construction engineering education,
  • demographic differences,
  • multimedia learning,
  • video.,
+ Show More

Anthony Yusuf

Virginia Tech/Myers Lawson School of Construction, United States

Adedeji Afolabi

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0002-9065-4766

Abiola Akanmu

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0001-9145-4865

Johnson Olayiwola

Virginia Tech/Myers Lawson School of Construction, United States - ORCID: 0000-0003-2795-6195

  1. Abdulrahaman, M., Faruk, N., Oloyede, A., Surajudeen-Bakinde, N., Olawoyin, L., Mejabi, O., Imam-Fulani, Y., Fahm, A., & Azeez, A. (2020). Multimedia tools in the teaching and learning processes: A systematic review. Heliyon, 6(11). DOI: 10.1016/j.heliyon.2020.e05312
  2. Abudayyeh, O., Russell, J., Johnston, D., & Rowings, J. (2000). Construction engineering and management undergraduate education. Journal of construction engineering and management, 126(3), 169-175. DOI: 10.1061/(ASCE)0733-9364(2000)126:3(169).
  3. Afonso, A., Ramírez, J. J., & Díaz-Puente, J. M. (2012). University-industry cooperation in the education domain to foster competitiveness and employment. Procedia-Social and Behavioral Sciences, 46, 3947-3953. DOI: 10.1016/j.sbspro.2012.06.177.
  4. Aronson, J. D. (2018). Computer vision and machine learning for human rights video analysis: Case studies, possibilities, concerns, and limitations. Law & Social Inquiry, 43(4), 1188-1209. DOI: 10.1111/lsi.12353
  5. Bojko, A. (2013). Eye tracking the user experience: A practical guide to research. Rosenfeld Media. https://www.perlego.com/book/1257094/eye-tracking-the-user-experience-a-practical-guide-to-research-pdf
  6. Bozoglu, J. (2016). Collaboration and coordination learning modules for BIM education. J. Inf. Technol. Constr., 21, 152-163. http://www.itcon.org/2016/10
  7. Carter, B. T., & Luke, S. G. (2020). Best practices in eye tracking research. International Journal of Psychophysiology, 155, 49-62. DOI: 10.1016/j.ijpsycho.2020.05.010
  8. Castro-Alonso, J. C., Wong, M., Adesope, O. O., Ayres, P., & Paas, F. (2019). Gender imbalance in instructional dynamic versus static visualizations: A meta-analysis. Educational Psychology Review, 31, 361-387. DOI: 10.1007/s10648-019-09469-1
  9. Chiu, P.-S., Chen, H.-C., Huang, Y.-M., Liu, C.-J., Liu, M.-C., & Shen, M.-H. (2018). A video annotation learning approach to improve the effects of video learning. Innovations in Education and Teaching International, 55(4), 459-469. DOI: 10.1080/14703297.2016.1213653
  10. Choi, J. O., Shane, J. S., & Chih, Y.-Y. (2022). Diversity and inclusion in the engineering-construction industry. Journal of Management in Engineering, 38(2). DOI: 10.1061/(ASCE)ME.1943-5479.0001005
  11. De Koning, B. B., Tabbers, H. K., Rikers, R. M., & Paas, F. (2009). Towards a framework for attention cueing in instructional animations: Guidelines for research and design. Educational Psychology Review, 21, 113-140. DOI: 10.1007/s10648-009-9098-7
  12. Dousay, T. A., & Trujillo, N. P. (2019). An examination of gender and situational interest in multimedia learning environments. British Journal of Educational Technology, 50(2), 876-887. DOI: 10.1111/bjet.12610
  13. Eiris Pereira, R., & Gheisari, M. (2019). Site visit application in construction education: A descriptive study of faculty members. International Journal of Construction Education and Research, 15(2), 83-99. DOI: 10.1080/15578771.2017.1375050
  14. Ferreira, C., Baptista, M., & Arroio, A. (2013). Teachers’ pedagogical strategies for integrating multimedia tools in science teaching. Journal of Baltic Science Education, 12(4), 509. https://pdfs.semanticscholar.org/5124/0abc5a17c7c8ee0c390904f2747e50992f0b.pdf
  15. Grimley, M. (2007). Learning from multimedia materials: The relative impact of individual differences. Educational Psychology, 27(4), 465-485. DOI: 10.1080/01443410601159795
  16. Gunhan, S. (2015). Collaborative learning experience in a construction project site trip. Journal of Professional Issues in Engineering Education and Practice, 141(1), 04014006. DOI: 10.1061/(ASCE)EI.1943-5541.0000207.
  17. Hashimoto, D. A., Rosman, G., Witkowski, E. R., Stafford, C., Navarrete-Welton, A. J., Rattner, D. W., Lillemoe, K. D., Rus, D. L., & Meireles, O. R. (2019). Computer vision analysis of intraoperative video: automated recognition of operative steps in laparoscopic sleeve gastrectomy. Annals of surgery, 270(3), 414. DOI: 10.1097/SLA.0000000000003460
  18. Homer, B. D., Plass, J. L., & Blake, L. (2008). The effects of video on cognitive load and social presence in multimedia-learning. Computers in Human Behavior, 24(3), 786-797. DOI: 10.1016/j.chb.2007.02.009
  19. Kalyuga, S. (2013). Effects of learner prior knowledge and working memory limitations on multimedia learning. Procedia-Social and Behavioral Sciences, 83, 25-29. DOI: 10.1016/j.sbspro.2013.06.005
  20. Kalyuga, S., Chandler, P., & Sweller, J. (2000). Incorporating learner experience into the design of multimedia instruction. Journal of Educational Psychology, 92(1), 126. DOI: 10.1037/0022-0663.92.1.126
  21. Kelley, K., Clark, B., Brown, V., & Sitzia, J. (2003). Good practice in the conduct and reporting of survey research. International Journal for Quality in health care, 15(3), 261-266. DOI: 10.1093/intqhc/mzg031
  22. Latifzadeh, K., Amiri, S., Bosaghzadeh, A., Rahimi, M., & Ebrahimpour, R. (2020). Evaluating cognitive load of multimedia learning by eye-tracking data analysis. Technology of Education Journal (TEJ), 15(1), 33-50. DOI: 10.22061/tej.2020.6237.2368
  23. Law, E. L.-C., Mattheiss, E. E., Kickmeier-Rust, M. D., & Albert, D. (2010, November 4-5, 2010.). Vicarious learning with a digital educational game: Eye-tracking and survey-based evaluation approaches. 6th Symposium of the Workgroup Human-Computer Interaction and Usability Engineering, USAB 2010., Klagenfurt, Austria. DOI: 10.1007/978-3-642-16607-5_33
  24. Mayer, R. E., & Fiorella, L. (2014). 12 principles for reducing extraneous processing in multimedia learning: Coherence, signaling, redundancy, spatial contiguity, and temporal contiguity principles. In The Cambridge handbook of multimedia learning (Vol. 279). Cambridge University Press New York, NY. DOI: 10.1017/CBO9781139547369.015
  25. Molina, A. I., Navarro, Ó., Ortega, M., & Lacruz, M. (2018). Evaluating multimedia learning materials in primary education using eye tracking. Computer Standards & Interfaces, 59, 45-60. DOI: 10.1016/j.csi.2018.02.004
  26. Moreno, R., & Flowerday, T. (2006). Students’ choice of animated pedagogical agents in science learning: A test of the similarity-attraction hypothesis on gender and ethnicity. Contemporary educational psychology, 31(2), 186-207. DOI: 10.1016/j.cedpsych.2005.05.002
  27. Navarro, O., Molina, A. I., Lacruz, M., & Ortega, M. (2015). Evaluation of multimedia educational materials using eye tracking. Procedia-Social and Behavioral Sciences, 197, 2236-2243. DOI: 10.1016/j.sbspro.2015.07.366
  28. Olayiwola, J., Akanmu, A., Gao, X., Murzi, H., & Afsari, K. (2023). Design and Usability Evaluation of an Annotated Video–Based Learning Environment for Construction Engineering Education. Journal of Computing in Civil Engineering, 37(6), 04023033. DOI: 10.1061/JCCEE5.CPENG-5206
  29. Olayiwola, J., Yusuf, A. O., Akanmu, A. A., Murzi, H., Gao, X., & Afsari, K. (2023). Construction practice knowledge for complementing classroom teaching during site visits. Smart and Sustainable Built Environment, Ahead-of-print(Ahead-of-print), Ahead-of-print. DOI: 10.1108/SASBE-07-2022-0144
  30. Pedro, A., Le, Q. T., & Park, C. S. (2016). Framework for integrating safety into construction methods education through interactive virtual reality. Journal of Professional Issues in Engineering Education and Practice, 142(2), 04015011. DOI: 10.1061/(ASCE)EI.1943-5541.0000261
  31. Poonja, H. A., Shirazi, M. A., Khan, M. J., & Javed, K. (2023). Engagement detection and enhancement for STEM education through computer vision, augmented reality, and haptics. Image and Vision Computing, 142(2), 104720. DOI: 10.1016/j.imavis.2023.104720
  32. Refat, N., Kassim, H., & Rahman, M. A. (2020). A cognitive approach-based instructional design for managing cognitive load and improving learning outcome. 2020 Emerging Technology in Computing, Communication and Electronics (ETCCE), Bangladesh. DOI: 10.1109/ETCCE51779.2020.9350864
  33. Saha, S., & Halder, S. (2016). He or She: Does gender affect various modes of instructional visual design? Journal of Research on Women and Gender, 7(1), 47-58. https://hdl.handle.net/10877/12891
  34. Savov, T., Terzieva, V., & Todorova, K. (2018). Computer vision and internet of things: Attention system in educational context. Proceedings of the 19th International Conference on Computer Systems and Technologies, DOI: 10.1145/3274005.3274014
  35. Sharek, D. (2011). A useable, online NASA-TLX tool. Proceedings of the human factors and ergonomics society annual meeting, DOI: 10.1177/107118131155128
  36. Shojaei, A., Rokooei, S., Mahdavian, A., Carson, L., & Ford, G. (2021). Using immersive video technology for construction management content delivery: a pilot study. J. Inf. Technol. Constr., 26, 886-901. DOI: 10.36680/j.itcon.2021.047
  37. Sophokleous, A., Christodoulou, P., Doitsidis, L., & Chatzichristofis, S. A. (2021). Computer vision meets educational robotics. Electronics, 10(6), 730. DOI: 10.3390/electronics10060730
  38. Stark, L., Brünken, R., & Park, B. (2018). Emotional text design in multimedia learning: A mixed-methods study using eye tracking. Computers & Education, 120, 185-196. DOI: 10.1016/j.compedu.2018.02.003
  39. Tang, S., Roberts, D., & Golparvar-Fard, M. (2020). Human-object interaction recognition for automatic construction site safety inspection. Automation in Construction, 120, 103356. DOI: 10.1016/j.autcon.2020.103356
  40. Tetiana, M., Kondratenko, Y., Sidenko, I., & Kondratenko, G. (2021). Computer vision mobile system for education using augmented reality technology. Journal of Mobile Multimedia, 17(4), 555–576. DOI: 10.13052/jmm1550-4646.1744
  41. Tudić, V., Stančić, A., Kralj, D., & Tropčić, T. (2022). Application of Computer Vision in Education in Mechatronic Control System. 2022 ELEKTRO (ELEKTRO), Krakow, Poland. DOI: 10.1109/ELEKTRO53996.2022.9803616
  42. Zhang, H., Kyaw, Z., Chang, S.-F., & Chua, T.-S. (2017). Visual translation embedding network for visual relation detection. Proceedings of the IEEE conference on computer vision and pattern recognition, http://openaccess.thecvf.com/content_cvpr_2017/papers/Zhang_Visual_Translation_Embedding_CVPR_2017_paper.pdf
  43. Zhao, Q., & Li, Z. (2021). Application of computer vision media simulation technology in distance education of new generation labor productivity. Journal of Physics: Conference Series, DOI: 10.1088/1742-6596/1992/4/042044
PDF
  • Publication Year: 2023
  • Pages: 242-253

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Evaluation of Computer Vision-Aided Multimedia Learning in Construction Engineering Education

Authors

Anthony Yusuf, Adedeji Afolabi, Abiola Akanmu, Johnson Olayiwola

DOI

10.36253/979-12-215-0289-3.23

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

152

Fulltext
downloads

137

Views

Export Citation

1,362

Open Access Books

in the Catalogue

2,383

Book Chapters

3,948,075

Fulltext
downloads

4,550

Authors

from 942 Research Institutions

of 66 Nations

68

scientific boards

from 374 Research Institutions

of 44 Nations

1,249

Referees

from 382 Research Institutions

of 38 Nations