Contained in:
Book Chapter

Exploring competitiveness and wellbeing in Italy by spatial principal component analysis

  • Carlo Cusatelli
  • Massimiliano Giacalone
  • Eugenia Nissi

Well being is a multidimensional phenomenon, that cannot be measured by a single descriptive indicator and that, it should be represented by multiple dimensions. It requires, to be measured by combination of different dimensions that can be considered together as components of the phenomenon. This combination can be obtained by applying methodologies knows as Composite Indicators (CIs). CIs are largely used to have a comprehensive view on a phenomenon that cannot be captured by a single indicator. Principal Component Analysis (PCA) is one of the most popular multivariate statistical technique used for reducing data with many dimension, and often well being indicators are obtained using PCA. PCA is implicitly based on a reflective measurement model that it non suitable for all types of indicators. Mazziotta and Pareto (2013) in their paper discuss the use and misuse of PCA for measuring well-being. The classical PCA is not suitable for data collected on the territory because it does not take into account the spatial autocorrelation present in the data. The aim of this paper is to propose the use of Spatial Principal Component Analysis for measuring well being in the Italian Provinces.

  • Keywords:
  • Well being,
  • Spatial Principal Component Analysis (sPCA),
  • Composite Indicators,
+ Show More

Carlo Cusatelli

University of Bari Aldo Moro, Italy - ORCID: 0000-0003-3770-3060

Massimiliano Giacalone

University of Naples Federico II, Italy - ORCID: 0000-0002-4284-520X

Eugenia Nissi

University of Chieti-Pescara G. D'Annunzio, Italy - ORCID: 0000-0003-3440-601X

  1. Allardt, E. (1981). Experiences from the comparative Scandinavian study, with a bibliography of the project. European Journal of Political Research, 9, pp. 101-111.
  2. Andrews, F., Szalai A. (1980). Quality of life: comparative studies, Sage, London, (UK). Bowley, A. (1923). The nature and the purposes of the measurement of social phenomena. P.S. King & Son Ltd., London, (UK).
  3. Bureau International du Travail – BIT (1926). Les méthodes d'enquête sur les budgets familiaux, Etudes et Documents, Série N, 9, Genève, (CH).
  4. Christian, D.E. (1974). International social indicators: the OECD experience. Social Indicators Research, 1974, 1, pp. 169-186.
  5. Engel, E. (1887). La consommation comme mesure du bien-être des individus, des familles, des nations, in Bulletin de l'Institut International de Statistique, Tome II, Héritiers Botta, Roma, (IT).
  6. Fourastié, J. (1962). Machinisme et bien-être, niveau de vie et genre de vie en France de 1700 à nos jours. Les éditions de minuit, Paris, (FR).
  7. Jombart, T., Devillard, S., Dufour, A. B., Pontier, D. (2008). Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity, 101(1), pp. 92-103.
  8. Harris, P., Brunsdon, C., Charlton, M. (2011). Geographically weighted principal components analysis. International Journal of Geographical Information Science, 25(10), pp. 1717-1736.
  9. ISTAT (2020), Rapporto BES.
  10. Le Play, F. (1855). Les ouvriers européens; études sur les travaux, la vie domestique et la condition morale des populations ouvriéres de l'Europe, précédées d'un exposé de la méthode d'observation, Imprimerie Impériale, Paris, (FR).
  11. Mazziotta, M., Pareto, A. (2013). Methods for constructing composite indices: One for all or all for one. Rivista Italiana di Economia Demografia e Statistica, 67(2), pp. 67-80.
  12. Moran, P.A.P. (1950), "Notes on Continuous Stochastic Phenomena," Biometrika, 37, pp. 17-33.
  13. Tipping, M. E., Bishop, C. M. (1999). Probabilistic principal component analysis. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 61(3), pp. 611-622.
  14. Woytinsky, W.S., Woytinsky, E.S. (1953). World population and production. Trends and outlook. The Twentieth Century Fund, New York City, (NY).
PDF
  • Publication Year: 2021
  • Pages: 141-146
  • Content License: CC BY 4.0
  • © 2021 Author(s)

XML
  • Publication Year: 2021
  • Content License: CC BY 4.0
  • © 2021 Author(s)

Chapter Information

Chapter Title

Exploring competitiveness and wellbeing in Italy by spatial principal component analysis

Authors

Carlo Cusatelli, Massimiliano Giacalone, Eugenia Nissi

Language

English

DOI

10.36253/978-88-5518-461-8.27

Peer Reviewed

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

ASA 2021 Statistics and Information Systems for Policy Evaluation

Book Subtitle

BOOK OF SHORT PAPERS of the on-site conference

Editors

Bruno Bertaccini, Luigi Fabbris, Alessandra Petrucci

Peer Reviewed

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/978-88-5518-461-8

eISBN (pdf)

978-88-5518-461-8

eISBN (xml)

978-88-5518-462-5

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

249

Fulltext
downloads

249

Views

Export Citation

1,329

Open Access Books

in the Catalogue

2,077

Book Chapters

3,687,987

Fulltext
downloads

4,287

Authors

from 902 Research Institutions

of 65 Nations

65

scientific boards

from 347 Research Institutions

of 43 Nations

1,244

Referees

from 378 Research Institutions

of 38 Nations