Contained in:
Book Chapter

FCM-Enabled Approach for Investigating Interdependencies of BIM Performance Factors in the Sustainable Built Environment

  • Pavan Kumar
  • Aritra Pal
  • Yun-Tsui Chang
  • Shang-Hsien Hsieh

In pursuit of a sustainable built environment, BIM plays a crucial role in the project's performance and has egressed as a powerful technology in the construction industry, impacting the outcome and the project delivery workflows. Numerous dynamic and interdependent factors influence BIM performance. However, Existing literature prominently focuses on exploring the influencing factors for BIM performance, ignoring the impact and strength of the interplay of these factors on one another, therefore offering an inadequate picture of optimizing BIM performance. The evolving nature and degree of complexity of construction projects necessitate the identification and comprehensive understanding of the interdependencies between factors contributing to BIM performance in the sustainable built environment. A Fuzzy Cognitive Map (FCM) is a modeling method that represents and analyses the interplay between the factors in a complex system. So, this study proposes an FCM-enabled approach to investigate the interdependencies of factors contributing to BIM performance and conduct what-if scenarios, including predictive analysis. The developed FCM model can help reveal the hidden cause-effect relationships among a complex system of BIM performance factors, enabling stakeholders to develop more informed strategies and proactively plan to optimize BIM Performance

  • Keywords:
  • BIM performance,
  • Fuzzy Cognitive Map (FCM),
  • Built environment,
+ Show More

Pavan Kumar

National Taiwan University, Taiwan (Province of China)

Aritra Pal

National Taiwan University, Taiwan (Province of China) - ORCID: 0000-0002-1644-7400

Yun-Tsui Chang

National Taiwan University, Taiwan (Province of China) - ORCID: 0000-0003-1515-4187

Shang-Hsien Hsieh

National Taiwan University, Taiwan (Province of China)

  1. Al-Mohammad, M. S., Haron, A. T., Rahman, R. A., & Alhammadi, Y. (2023). Factors affecting BIM implementation in Saudi Arabia: A Critical analysis. International Journal of Building Pathology and Adaptation. DOI: 10.1108/IJBPA-09-2021-0122
  2. Badrinath, A. C., & Hsieh, S.-H. (2018). Empirical Approach to Identify Operational Critical Success Factors for BIM Projects. Journal of Construction Engineering and Management, 145(3). DOI: 10.1061/(ASCE)CO.1943-7862.000160
  3. Barbrook-Johnson, P., & Penn, A. S. (2022). Systems Mapping - How to build and use causal models of systems. In Systems Mapping.
  4. Caglayan, S., & Ozorhon, B. (2023). Determining Building Information Modeling Effectiveness. Automation in Construction, 151. DOI: 10.1016/j.autcon.2023.104861
  5. Case, D. M., Blackburn, T., & Stylios, C. (2018). Modelling Construction Management Problems with Fuzzy Cognitive Maps. In Fuzzy Hybrid Computing in Construction Engineering and Management: Theory and Applications. DOI: 10.1108/978-1-78743-868-220181012
  6. Chang, C.-Y., Pan, W., & Howard, R. (2017). Impact of Building Information Modeling Implementation on the Acceptance of Integrated Delivery Systems: Structural Equation Modeling Analysis. Journal of Construction Engineering and Management, 143(8). DOI: 10.1061/(asce)co.1943-7862.0001335
  7. Einur Azrin Baharuddin, H., Faizal Othman, A., Adnan, H., & Norizan Wan Ismail, W. (2019). BIM Training: The Impact on BIM Adoption among Quantity Surveyors in Government Agencies. IOP Conference Series: Earth and Environmental Science, 233(2). DOI: 10.1088/1755-1315/233/2/022036
  8. Franz, B., & Messner, J. (2019a). Evaluating the Impact of Building Information Modeling on Project Performance. Journal of Computing in Civil Engineering, 33(3), 1–9. DOI: 10.1061/(asce)cp.1943-5487.0000832
  9. Franz, B., & Messner, J. (2019b). Evaluating the Impact of Building Information Modeling on Project Performance. Journal of Computing in Civil Engineering, 33(3), 1–9. DOI: 10.1061/(asce)cp.1943-5487.0000832
  10. Jiang, H. J., Cui, Z. P., Yin, H., & Yang, Z. B. (2021a). BIM Performance, Project Complexity, and User Satisfaction: A QCA Study of 39 Cases. Advances in Civil Engineering, 2021. DOI: 10.1155/2021/6654851
  11. Jiang, H. J., Cui, Z. P., Yin, H., & Yang, Z. B. (2021b). BIM Performance, Project Complexity, and User Satisfaction: A QCA Study of 39 Cases. Advances in Civil Engineering, 2021. DOI: 10.1155/2021/6654851
  12. Kosko, B. (1986). Fuzzy Cognitive Maps. International Journal of Man-Machine Studies, September 1985, 65–75.
  13. Lee, C. Y., Chong, H.-Y., & Wang, X. (2018). Enhancing BIM Performance in EPC Projects through Integrative Trust-Based Functional Contracting Model. Journal of Construction Engineering and Management, 144(7), 1–6. DOI: 10.1061/(asce)co.1943-7862.0001521
  14. Lee, S., Kim, B. G., & Lee, K. (2004). Fuzzy Cognitive Map-based Approach to Evaluate EDI Performance: A Test of Causal Model. Expert Systems with Applications, 27(2), 287–299. DOI: 10.1016/j.eswa.2004.02.003
  15. Luo, L., Wu, X., Hong, J., & Wu, G. (2022). Fuzzy Cognitive Map-Enabled Approach for Investigating the Relationship between Influencing Factors and Prefabricated Building Cost Considering Dynamic Interactions. Journal of Construction Engineering and Management, 148(9). DOI: 10.1061/(asce)co.1943-7862.0002336
  16. Luo, L., Zhang, L., & He, Q. (2020). Linking project complexity to project success: a hybrid SEM–FCM method. Engineering, Construction and Architectural Management, 27(9), 2591–2614. DOI: 10.1108/ECAM-05-2019-0241
  17. Maitra, S., & Banerjee, D. (2014). Application of Fuzzy Cognitive Mapping for Cognitive Task Analysis in Mechanised Mines. IOSR Journal of Mechanical and Civil Engineering, 11(2), 20–28. DOI: 10.9790/1684-11212028
  18. Nápoles, G., Espinosa, M. L., Grau, I., & Vanhoof, K. (2018). FCM Expert: Software Tool for Scenario Analysis and Pattern Classification Based on Fuzzy Cognitive Maps. International Journal on Artificial Intelligence Tools, 27(7). DOI: 10.1142/S0218213018600102
  19. Oraee, M., Hosseini, M. R., Edwards, D. J., Li, H., Papadonikolaki, E., & Cao, D. (2019). Collaboration barriers in BIM-based construction networks: A conceptual model. International Journal of Project Management, 37(6), 839–854. DOI: 10.1016/j.ijproman.2019.05.004
  20. Papageorgiou, E. I., & Salmeron, J. L. (2013). A Review Of Fuzzy Cognitive Maps Research During the Last Decade. IEEE Transactions on Fuzzy Systems, 21(1), 66–79 DOI: 10.1109/TFUZZ.2012.2201727
  21. Poczeta, K., Papageorgiou, E. I., & Gerogiannis, V. C. (2020). Fuzzy Cognitive Maps Optimization for Decision Making and Prediction. Mathematics, 8(11), 1–15. DOI: 10.3390/math8112059
  22. Rogers, J., Chong, H. Y., & Preece, C. (2015). Adoption of Building Information Modelling technology (BIM): Perspectives from Malaysian engineering consulting services firms. Engineering, Construction and Architectural Management, 22(4), 424–445. DOI: 10.1108/ECAM-05-2014-0067
  23. Salim, M. S., & Mahjoob, A. M. R. (2020). Integrated project delivery (IPD) method with BIM to improve the project performance: a case study in the Republic of Iraq. Asian Journal of Civil Engineering, 21(6), 947–957. DOI: 10.1007/s42107-020-00251-1
  24. Song, J., Migliaccio, G. C., Wang, G., & Lu, H. (2017). Exploring the Influence of System Quality, Information Quality, and External Service on BIM User Satisfaction. Journal of Management in Engineering, 33(6). DOI: 10.1061/(asce)me.1943-5479.0000549
  25. Wang, K., Zhang, C., Guo, F., & Guo, S. (2022). Toward an Efficient Construction Process: What Drives BIM Professionals to Collaborate in BIM-Enabled Projects. Journal of Management in Engineering, 38(4). DOI: 10.1061/(asce)me.1943-5479.0001056
  26. Zhang, L., Pan, Y., Wu, X., & Skibniewski, M. J. (2021). Fuzzy Modeling and Reasoning. In Artificial Intelligence in Construction Engineering and Management (pp. 41–66). Springer.
PDF
  • Publication Year: 2023
  • Pages: 585-593

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

FCM-Enabled Approach for Investigating Interdependencies of BIM Performance Factors in the Sustainable Built Environment

Authors

Pavan Kumar, Aritra Pal, Yun-Tsui Chang, Shang-Hsien Hsieh

DOI

10.36253/979-12-215-0289-3.57

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

99

Fulltext
downloads

91

Views

Export Citation

1,361

Open Access Books

in the Catalogue

2,368

Book Chapters

3,870,371

Fulltext
downloads

4,536

Authors

from 942 Research Institutions

of 66 Nations

67

scientific boards

from 357 Research Institutions

of 43 Nations

1,249

Referees

from 381 Research Institutions

of 38 Nations