Contained in:
Book Chapter

Numerical Wave Tanks for Wave Energy Converters Using High-Performance Computing

  • Milad Abdollahpour
  • Federico Domenichini
  • Lorenzo Cappietti

Numerical Wave Tanks (NWTs) powered by Computational Fluid Dynamics (CFD) and High-Performance Computing (HPC) offer a cost-effective and flexible alternative to physical wave tanks. They are essential for simulating complex wave phenomena and wave-structure interaction. This research explores the assessment of NWT reliability, particularly in HPC environments, using OpenFOAM, an open-source CFD toolbox. OpenFOAM's parallel processing capabilities leverage HPC to achieve accurate and efficient simulations of wave dynamics, crucial for optimizing wave energy converter designs and advancing renewable energy generation. HPC reduces execution time, enabling more comprehensive simulations and faster design optimization, ultimately accelerating progress in wave energy technologies. The study demonstrates OpenFOAM's suitability for NWT simulations while acknowledging the need for validation and optimization of grid and discretization methods.

  • Keywords:
  • Numerical Wave Tanks (NWTs),
  • CFD,
  • OpenFOAM,
  • Parallelization,
  • High-Performance Computing (HPC),
+ Show More

Milad Abdollahpour

University of Florence, Italy

Federico Domenichini

University of Florence, Italy

Lorenzo Cappietti

University of Florence, Italy - ORCID: 0000-0002-3957-5763

  1. Boo, S.Y., Kim, C.H., (1997) - Nonlinear irregular waves and forces on truncated vertical cylinder in a numerical wave tank. Presented at the ISOPE International Ocean and Polar Engineering Conference, ISOPE, p. ISOPE-I-97-268.
  2. Boo, S.Y., Kim, C.H., Kim, M.H., (1994) - A numerical wave tank for nonlinear irregular waves by 3-D higher order boundary element method. International Journal of Offshore and Polar Engineering 4.
  3. Coe, R.G., Neary, V.S., (2014) - Review of methods for modeling wave energy converter survival in extreme sea states.
  4. Cointe, R., Geyer, P., (1991) - Nonlinear and linear motions of a rectangular barge in a perfect fluid.
  5. Contento, G., (2000) - Numerical wave tank computations of nonlinear motions of two-dimensional arbitrarily shaped free-floating bodies. Ocean Engineering 27, 531–556. DOI: 10.1016/S0029-8018(98)00059-6
  6. Dao, M.H., Chew, L.W., Zhang, Y., (2018) - Modelling physical wave tank with flap paddle and porous beach in OpenFOAM. Ocean Engineering 154, 204–215. DOI: 10.1016/j.oceaneng.2018.02.024
  7. Didier, E., Teixeira, P.R., (2024) - Numerical analysis of 3D hydrodynamics and performance of an array of oscillating water column wave energy converters integrated into a vertical breakwater. Renewable Energy 120297. DOI: 10.1016/j.renene.2024.120297
  8. Dommermuth, D.G., Yue, D.K., (1987) - Numerical simulations of nonlinear axisymmetric flows with a free surface. Journal of Fluid Mechanics 178, 195–219. DOI: 10.1017/S0022112087001186
  9. Grilli, S.T., Horrillo, J., (1998) - Periodic wave shoaling over barred beaches in a fully nonlinear numerical wave tank. Presented at the ISOPE International Ocean and Polar Engineering Conference, ISOPE, p. ISOPE-I-98-239.
  10. Hughes, S.A., (1993) - Physical models and laboratory techniques in coastal engineering. World Scientific.
  11. Jin, Y., Wang, W., Kamath, A., Bihs, H., (2022) - Numerical Investigation on Wave-Overtopping at a Double-Dike Defence Structure in Response to Climate Change-Induced Sea Level Rise. Fluids 7, 295. DOI: 10.3390/fluids7090295
  12. Liu, Q., Xie, W., Duan, W.Y., Hu, C.H., (2014) - Numerical Simulation of Flow around a Cylinder under Different Reynolds Number. Presented at the Applied Mechanics and Materials, Trans Tech Publ, pp. 434–440.
  13. Longuet-Higgins, M.S., Cokelet, E.D., (1976) - The deformation of steep surface waves on water-I. A numerical method of computation. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 350, 1–26.
  14. Morales-Hernández, M., Sharif, M.B., Gangrade, S., Dullo, T.T., Kao, S.-C., Kalyanapu, A., Ghafoor, S.K., Evans, K.J., Madadi-Kandjani, E., Hodges, B.R., (2020) - High-performance computing in water resources hydrodynamics. Journal of Hydroinformatics 22, 1217–1235. DOI: 10.2166/hydro.2020.163
  15. Nojiri, N., (1980) - Study on the Drifting Force on Two-Dimensional Floating Body in Regular Waves. Transactions of the West-Japan Society of Naval Architects 131–152.
  16. Olbert, G., Abdel-Maksoud, M., (2023) - High-fidelity modelling of lift-based wave energy converters in a numerical wave tank. Applied Energy 347, 121460. DOI: 10.1016/j.apenergy.2023.121460
  17. Oliveira, D., de Almeida, J.L., Santiago, A., Rigueiro, C., (2022) - Development of a CFD-based numerical wave tank of a novel multipurpose wave energy converter. Renewable Energy 199, 226–245. DOI: 10.1016/j.renene.2022.08.103
  18. Ouro, P., Lopez-Novoa, U., Guest, M.F., (2021) - On the performance of a highly-scalable Computational Fluid Dynamics code on AMD, ARM and Intel processor-based HPC systems. Computer Physics Communications 269, 108105. DOI: 10.1016/j.cpc.2021.108105
  19. Qian, L., Mingham, C., Causon, D., Ingram, D., Folley, M., Whittaker, T., (2005) - Numerical simulation of wave power devices using a two-fluid free surface solver. Modern Physics Letters B 19, 1479–1482. DOI: 10.1142/S0217984905009705
  20. Qian, Z., Wang, L., Zhang, C., Liu, Q., Chen, Q., Lü, X., (2023) - Numerical modeling of water waves with the highly efficient and accurate Lagrangian-Eulerian stabilized collocation method (LESCM). Applied Ocean Research 138, 103672. DOI: 10.1016/j.apor.2023.103672
  21. Robaux, F., Benoit, M., (2021) - Development and validation of a numerical wave tank based on the Harmonic Polynomial Cell and Immersed Boundary methods to model nonlinear wave-structure interaction. Journal of Computational Physics 446, 110560. DOI: 10.1016/j.jcp.2021.110560
  22. Sen, D., (2016) - Time domain simulation of side-by-side floating bodies using a 3D numerical wave tank approach. Applied Ocean Research 58, 189–217.
  23. Sierra, J.P., Casas-Prat, M., (2014) - Analysis of potential impacts on coastal areas due to changes in wave conditions. Climatic change 124, 861–876. DOI: 10.1007/s10584-014-1120-5
  24. Silva, M.C., Vitola, M.A., Esperança, P.T.T., Sphaier, S.H., Levi, C.A., (2015) - Numerical simulations of regular waves in an ocean basin. Marine Systems & Ocean Technology 10, 131–144. DOI: 10.1007/s40868-015-0011-6
  25. Simonetti, I., Cappietti, L., (2017) - A CFD Study on the Balance of Energy in a Fixed Bottom-detached Oscillating Water Column Wave Energy Converter. Presented at the Proceedings of the 12th European Wave and Tidal Energy Conference, European Wave and Tidal Energy Conference 2017, pp. 0–0.
  26. Simonetti, I., Cappietti, L., El Safti, H., Manfrida, G., Matthies, H., Oumeraci, H., (2015) - The use of OpenFOAM as a virtual laboratory to simulate oscillating water column wave energy converters. Presented at the MARINE VI: proceedings of the VI International Conference on Computational Methods in Marine Engineering, CIMNE, pp. 153–164.
  27. Simonetti, I., Cappietti, L., El Safti, H., Oumeraci, H., (2014) - 3D numerical modelling of oscillating water column wave energy conversion devices: current knowledge and OpenFOAM® implementation. Presented at the Proceedings of the 1st International Conference on Renewable Energies Offshore, Lisbon, Portugal, pp. 24–26.
  28. Simonetti, I., Cappietti, L., Elsafti, H., Oumeraci, H., (2018) - Evaluation of air compressibility effects on the performance of fixed OWC wave energy converters using CFD modelling. Renewable Energy 119, 741–753. DOI: 10.1016/j.renene.2017.12.027
  29. Sotiropoulos, F., (2015) - Hydraulics in the era of exponentially growing computing power. Journal of Hydraulic Research 53, 547–560. DOI: 10.1080/00221686.2015.1119210
  30. Stansby, P.K., Ouro, P., (2022) -Modelling marine turbine arrays in tidal flows. Journal of Hydraulic Research 60, 187–204. DOI: 10.1080/00221686.2021.2022032
  31. Stoesser, T., (2014) - Large-eddy simulation in hydraulics: Quo Vadis?. Journal of Hydraulic Research 52, 441–452. DOI: 10.1080/00221686.2014.944227
  32. Tanizawa, K., Naito, S., (1997) - A study on parametric roll motions by fully nonlinear numerical wave tank. Presented at the ISOPE International Ocean and Polar Engineering Conference, ISOPE, p. ISOPE-I-97-267.
  33. Vinje, T., Brevig, P., (1980) - Numerical simulation of breaking waves. Presented at the Proc. 3rd Int. Conf.
  34. Windt, C., Davidson, J., Ransley, E.J., Greaves, D., Jakobsen, M., Kramer, M., Ringwood, J.V., (2020) - Validation of a CFD-based numerical wave tank model for the power production assessment of the wavestar ocean wave energy converter. Renewable Energy 146, 2499–2516. DOI: 10.1016/j.renene.2019.08.059
  35. Windt, C., Davidson, J., Schmitt, P., Ringwood, J.V., (2019) - On the assessment of numerical wave makers in CFD simulations. Journal of Marine Science and Engineering 7, 47. DOI: 10.3390/jmse7020047
  36. Zhuang, Y., Wan, D., (2019) - Numerical simulation of ship motion fully coupled with sloshing tanks by naoe-FOAM-SJTU solver. Engineering Computations 36, 2787–2810. DOI: 10.1108/EC-10-2018-0482
  37. Zullah, M.A., Prasad, D., Ahmed, M.R., Lee, Y.-H., (2010) - Performance analysis of a wave energy converter using numerical simulation technique. Science in China Series E: Technological Sciences 53, 13–18. DOI: 10.1007/s11431-010-0026-3
PDF
  • Publication Year: 2024
  • Pages: 835-845

XML
  • Publication Year: 2024

Chapter Information

Chapter Title

Numerical Wave Tanks for Wave Energy Converters Using High-Performance Computing

Authors

Milad Abdollahpour, Federico Domenichini, Lorenzo Cappietti

Language

Italian

DOI

10.36253/979-12-215-0556-6.72

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

Tenth International Symposium Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Book Subtitle

Livorno (Italy) 11th-13th June 2024

Editors

Laura Bonora, Marcantonio Catelani, Matteo De Vincenzi, Giorgio Matteucci

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0556-6

eISBN (pdf)

979-12-215-0556-6

eISBN (xml)

979-12-215-0557-3

Series Title

Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Series E-ISSN

2975-0288

0

Fulltext
downloads

0

Views

Export Citation

1,374

Open Access Books

in the Catalogue

2,545

Book Chapters

4,035,911

Fulltext
downloads

4,923

Authors

from 1036 Research Institutions

of 66 Nations

70

scientific boards

from 375 Research Institutions

of 44 Nations

1,258

Referees

from 383 Research Institutions

of 38 Nations