Contained in:
Book Chapter

Real-Time Geometry Assessment Using Laser Line Scanner During Laser Powder Directed Energy Deposition Additive Manufacturing of SS316L Component with Sharp Feature

  • Liu Yang
  • Boyu Wang
  • Jack C. P. Cheng
  • Peipei Liu
  • Hoon Sohn

Directed energy deposition (DED) is a major metal additive manufacturing (AM) technology that is increasingly used in many industries due to its ability to manufacture complex components of arbitrary shapes and sizes. However, a lack of timely geometry assessment and the consequent geometry control hinders the development of DED towards zero defect manufacturing. In this study, a real-time geometry assessment methodology is developed for laser pow-der directed energy deposition (LP-DED). A geometry assessment system is developed using a laser line scanner capable of inspecting the melt pool area, the just solidified area, as well as layer-wise inspection. An image processing method with an encoder-decoder based profile completion network was developed to obtain accurate track profile in images from real-time inspection. Experiments have been conducted to validate the proposed methodology by depositing multi-layer X-shape objects

  • Keywords:
  • Additive Manufacturing,
  • Directed energy deposition,
  • Real-time geometry assessment,
  • Laser line scanning,
+ Show More

Liu Yang

The Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0003-4455-4921

Boyu Wang

The Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0003-0119-548X

Jack C. P. Cheng

University of Hong KongThe Hong Kong University of Science and Technology, Hong Kong - ORCID: 0000-0002-1722-2617

Peipei Liu

Southeast University, China

Hoon Sohn

Korea Advanced Institute of Science Technology, Korea (the Republic of) - ORCID: 0000-0001-9337-6653

  1. J. Xiong, G. Zhang, Adaptive control of deposited height in GMAW-based layer additive manufacturing, Journal of Materials Processing Technology. 214 (2014) 962–968. DOI: 10.1016/j.jmatprotec.2013.11.014
  2. L. Tang, R.G. Landers, Melt Pool Temperature Control for Laser Metal Deposition Processes—Part II: Layer-to-Layer Temperature Control, Journal of Manufacturing Science and Engineering. 132 (2010) 011011. DOI: 10.1115/1.4000883
  3. S.K. Everton, M. Hirsch, P. Stravroulakis, R.K. Leach, A.T. Clare, Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing, Materials & Design. 95 (2016) 431–445. DOI: 10.1016/j.matdes.2016.01.099
  4. H.-W. Hsu, Y.-L. Lo, M.-H. Lee, Vision-based inspection system for cladding height measurement in Direct Energy Deposition (DED), Additive Manufacturing. 27 (2019) 372–378. DOI: 10.1016/j.addma.2019.03.017
  5. N. Decker, Y. Wang, Q. Huang, Efficiently registering scan point clouds of 3D printed parts for shape accuracy assessment and modeling, Journal of Manufacturing Systems. 56 (2020) 587–597. DOI: 10.1016/j.jmsy.2020.04.001
  6. C. Xia, Z. Pan, J. Polden, H. Li, Y. Xu, S. Chen, Y. Zhang, A review on wire arc additive manufacturing: Monitoring, control and a framework of automated system, Journal of Manufacturing Systems. 57 (2020) 31–45. DOI: 10.1016/j.jmsy.2020.08.008
  7. Micro-Epsilon Messtechnik, Laser line triangulation | Micro-Epsilon, Micro-Epsilon Messtechnik. (n.d.). https://www.micro-epsilon.com (accessed December 20, 2022).
  8. L. Yang, K. Hsu, B. Baughman, D. Godfrey, F. Medina, M. Menon, S. Wiener, Additive Manufacturing of Metals: The Technology, Materials, Design and Production, Springer International Publishing, Cham, 2017. DOI: 10.1007/978-3-319-55128-9
  9. I. Jeon, L. Yang, K. Ryu, H. Sohn, Online melt pool depth estimation during directed energy deposition using coaxial infrared camera, laser line scanner, and artificial neural network, Additive Manufacturing. 47 (2021) 102295. DOI: 10.1016/j.addma.2021.102295
  10. D. Tyralla, H. Köhler, T. Seefeld, C. Thomy, R. Narita, A multi-parameter control of track geometry and melt pool size for laser metal deposition, Procedia CIRP. 94 (2020) 430–435. DOI: 10.1016/j.procir.2020.09.159
  11. B.T. Gibson, Y.K. Bandari, B.S. Richardson, W.C. Henry, E.J. Vetland, T.W. Sundermann, L.J. Love, Melt pool size control through multiple closed-loop modalities in laser-wire directed energy deposition of Ti-6Al-4V, Additive Manufacturing. 32 (2020) 100993. DOI: 10.1016/j.addma.2019.100993
  12. Y. Lu, G. Sun, X. Xiao, J. Mazumder, Online Stress Measurement During Laser-aided Metallic Additive Manufacturing, Sci Rep. 9 (2019) 7630. DOI: 10.1038/s41598-019-39849-0
  13. S. Kim, I. Jeon, H. Sohn, Infrared thermographic imaging based real-time layer height estimation during directed energy deposition, Optics and Lasers in Engineering. 168 (2023) 107661. DOI: 10.1016/j.optlaseng.2023.107661
  14. R. Sampson, R. Lancaster, M. Sutcliffe, D. Carswell, C. Hauser, J. Barras, The influence of key process parameters on melt pool geometry in direct energy deposition additive manufacturing systems, Optics & Laser Technology. 134 (2021) 106609. DOI: 10.1016/j.optlastec.2020.106609
  15. M. Borish, B.K. Post, A. Roschli, P.C. Chesser, L.J. Love, K.T. Gaul, Defect Identification and Mitigation Via Visual Inspection in Large-Scale Additive Manufacturing, JOM. 71 (2019) 893–899. DOI: 10.1007/s11837-018-3220-6
  16. M. Faes, F. Vogeler, K. Coppens, H. Valkenaers, W. Abbeloos, T. Goedeme, E. Ferraris, Process Monitoring of Extrusion Based 3D Printing via Laser Scanning, (2014). DOI: 10.13140/2.1.5175.0081
  17. W. Lin, H. Shen, J. Fu, S. Wu, Online quality monitoring in material extrusion additive manufacturing processes based on laser scanning technology, Precision Engineering. 60 (2019) 76–84. DOI: 10.1016/j.precisioneng.2019.06.004
  18. A. Vandone, S. Baraldo, A. Valente, Multisensor Data Fusion for Additive Manufacturing Process Control, IEEE Robot. Autom. Lett. 3 (2018) 3279–3284. DOI: 10.1109/LRA.2018.2851792
  19. A. Heralić, A.-K. Christiansson, B. Lennartson, Height control of laser metal-wire deposition based on iterative learning control and 3D scanning, Optics and Lasers in Engineering. 50 (2012) 1230–1241. DOI: 10.1016/j.optlaseng.2012.03.016
  20. R.C. Gonzalez, R.E. Woods, Digital image processing, Pearson, New York, NY, 2018.
  21. D. Deng, DBSCAN Clustering Algorithm Based on Density, in: 2020 7th International Forum on Electrical Engineering and Automation (IFEEA), 2020: pp. 949–953. DOI: 10.1109/IFEEA51475.2020.00199
  22. P.G. Guest, P.G. Guest, Numerical Methods of Curve Fitting, Cambridge University Press, 2012.
  23. L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, H. Adam, Encoder-Decoder with Atrous Separable Convolution for Semantic Image Segmentation, (2018). http://arxiv.org/abs/1802.02611 (accessed October 28, 2022).
  24. W. Yuan, T. Khot, D. Held, C. Mertz, M. Hebert, PCN: Point Completion Network, in: 2018 International Conference on 3D Vision (3DV), IEEE, Verona, 2018: pp. 728–737. DOI: 10.1109/3DV.2018.00088
  25. X. Yu, Y. Rao, Z. Wang, Z. Liu, J. Lu, J. Zhou, PoinTr: Diverse Point Cloud Completion with Geometry-Aware Transformers, in: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), IEEE, Montreal, QC, Canada, 2021: pp. 12478–12487. DOI: 10.1109/ICCV48922.2021.01227
  26. K. He, X. Zhang, S. Ren, J. Sun, Deep Residual Learning for Image Recognition, in: 2016: pp. 770–778. https://openaccess.thecvf.com/content_cvpr_2016/html/He_Deep_Residual_Learning_CVPR_2016_paper.html (accessed December 5, 2022).
  27. L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking Atrous Convolution for Semantic Image Segmentation, (2017). DOI: 10.48550/arXiv.1706.05587
  28. J. Santolaria, J.J. Pastor, F.J. Brosed, J.J. Aguilar, A one-step intrinsic and extrinsic calibration method for laser line scanner operation in coordinate measuring machines, Meas. Sci. Technol. 20 (2009) 045107. DOI: 10.1088/0957-0233/20/4/045107
PDF
  • Publication Year: 2023
  • Pages: 965-976

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Real-Time Geometry Assessment Using Laser Line Scanner During Laser Powder Directed Energy Deposition Additive Manufacturing of SS316L Component with Sharp Feature

Authors

Liu Yang, Boyu Wang, Jack C. P. Cheng, Peipei Liu, Hoon Sohn

DOI

10.36253/979-12-215-0289-3.97

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

107

Fulltext
downloads

114

Views

Export Citation

1,343

Open Access Books

in the Catalogue

2,222

Book Chapters

3,790,127

Fulltext
downloads

4,410

Authors

from 923 Research Institutions

of 65 Nations

65

scientific boards

from 348 Research Institutions

of 43 Nations

1,248

Referees

from 381 Research Institutions

of 38 Nations