Contained in:
Book Chapter

Using multispectral UAV imagery and ground truthing to assess the success of vegetation reinforcement in a coastal area – the case of Inwadar National Park, Malta

  • Leanne Camilleri
  • Sandro Lanfranco

Ground-based methods of vegetation survey are slow and expensive, but recent technological developments have made UAVs (Unoccupied Aerial Vehicles or drones) accessible to consumer budgets, facilitating their use in vegetation monitoring. We propose a method for using UAVs to evaluate a vegetation reinforcement programme in a coastal area in Malta and compare its accuracy and cost-effectiveness with that of ground-based methods (including walkthrough-surveys and measurements of chlorophyll-a content). Multi-seasonal imaging of the site was captured using a DJI Phantom 4 drone equipped with sensors sensitive to visible, near infrared (NIR) and red edge (RE) light. These images were used to construct NDVIs of the site from which vegetation characteristics were deduced. Results suggest that UAVs provides a cost-effective way to map, quantify, and detect changes in vegetation cover which can enable assessment of physiological performance once a calibration procedure has been carried out. With an accuracy comparable to ground-based surveys, but quicker and cheaper, drone-based methods provide a viable and economically-attractive alternative to manual surveying methods.

  • Keywords:
  • UAVs,
  • vegetation monitoring,
  • reinforcement programme,
  • NDVIs,
  • cost-effectiveness,
+ Show More

Leanne Camilleri

University of Malta, Malta - ORCID: 0009-0004-1081-2229

Sandro Lanfranco

University of Malta, Malta - ORCID: 0000-0002-0360-7065

  1. Agisoft LLC. (2023). Agisoft Metashape Professional, Version 2.0.1. In https://www.agisoft.com/
  2. Almalki, R., Khaki, M., Saco, P. M., & Rodriguez, J. F. (2022). Monitoring and mapping vegetation cover changes in arid and semi-arid areas using remote sensing technology: a review. Remote Sensing, 14(20), 5143 DOI: 10.3390/rs14205143
  3. Atar, F., Güney, D., Bayraktar, A., Yıldırım, N., & Turna, İ. (2020). Seasonal change of chlorophyll content (spad value) in some tree and shrub species. Turkish Journal of Forest Science, 4(2), 245-256 DOI: 10.32328/turkjforsci.711389
  4. Bradshaw, A. (1997). Restoration of mined lands—using natural processes. Ecological engineering, 8(4), 255-269 DOI: 10.1016/S0925-8574(97)00022-0
  5. Brullo, S., Brullo, C., Cambria, S., & del Galdo, G. G. (2020). The Vegetation of the Maltese Islands. Springer
  6. Camilleri, L. (2023). Ecological Restoration in Inwadar National Park. Unpublished Master of Science dissertation. Faculty of Science, University of Malta, Malta.
  7. Cervena, L., Pinlová, G., Lhotáková, Z., Neuwirthová, E., Kupková, L., Potucková, M., Lysák, J., Campbell, P., & Albrechtová, J. (2022). Determination of Chlorophyll Content in Selected Grass Communities of KRKONOŠE Mts. Tundra Based on Laboratory Spectroscopy and Aerial Hyperspectral data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 43. DOI: 10.5194/isprs-archives-XLIII-B3-2022-381-2022
  8. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239-264. DOI: 10.1071/FP02076
  9. Chazdon, R. L. (2008). Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 320(5882), 1458-1460. DOI: 10.1126/science.1155365
  10. Fernández-Guisuraga, J. M., Sanz-Ablanedo, E., Suárez-Seoane, S., & Calvo, L. (2018). Using Unmanned Aerial Vehicles in Postfire Vegetation Survey Campaigns through Large and Heterogeneous Areas: Opportunities and Challenges. Sensors, 18(2), 586. DOI: 10.3390/s18020586
  11. Gitelson, A. A., Buschmann, C., & Lichtenthaler, H. K. (1999). The chlorophyll fluorescence ratio F735/F700 as an accurate measure of the chlorophyll content in plants. Remote Sensing of Environment, 69(3), 296-302.
  12. Hartmann, M., Frey, B., Mayer, J., Mäder, P., & Widmer, F. (2015). Distinct soil microbial diversity under long-term organic and conventional farming. The ISME journal, 9(5), 1177-1194. DOI: 10.1016/S0034-4257(99)00023-1
  13. Heywood, V., Shaw, K., Harvey-Brown, Y., & Smith, P. (2018). BGCI and IABG's species recovery manual. Botanic Gardens Conservation International. DOI: 10.1038/ismej.2014.210
  14. Lee, H., Hwang, W., Jeong, J., Yang, S., Jeong, N., Lee, C., & Choi, M. (2021). Physiological causes of transplantation shock on rice growth inhibition and delayed heading. Scientific Reports, 11(1), 16818.
  15. Li, J., Lu, X., Ju, W., Li, J., Zhu, S., & Zhou, Y. (2022). Seasonal changes of leaf chlorophyll content as a proxy of photosynthetic capacity in winter wheat and paddy rice. Ecological Indicators, 140, 109018. DOI: 10.1038/s41598-021-96009-z
  16. Liu, S., Li, S., Fan, X.-Y., Yuan, G.-D., Hu, T., Shi, X.-M., Huang, J.-B., Pu, X.-Y., & Wu, C.-S. (2019). Comparison of two noninvasive methods for measuring the pigment content in foliose macrolichens. Photosynthesis Research, 141, 245-25 DOI: 10.1016/j.ecolind.2022.109018
  17. QGIS Development Team. (2024). QGIS Geographic Information System Version 3.36.3. In Open Source Geospatial Foundation Project. DOI: 10.1007/s11120-019-00624-x
  18. Rastogi, A., Stróżecki, M., Kalaji, H. M., Łuców, D., Lamentowicz, M., & Juszczak, R. (2019). Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. Environmental and Experimental Botany, 160, 71-80.
  19. Robinson, J. M., Harrison, P. A., Mavoa, S., & Breed, M. F. (2022). Existing and emerging uses of drones in restoration ecology. Methods in Ecology and Evolution, 13(9), 1899-1911. DOI: 10.1016/j.envexpbot.2019.01.005
  20. Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ, 351(1), 309. DOI: 10.1111/2041-210X.13912
  21. Sparrow, B. D., Foulkes, J. N., Wardle, G. M., Leitch, E. J., Caddy-Retalic, S., van Leeuwen, S. J., Tokmakoff, A., Thurgate, N. Y., Guerin, G. R., & Lowe, A. J. (2020). A Vegetation and Soil Survey Method for Surveillance Monitoring of Rangeland Environments [Methods]. Frontiers in Ecology and Evolution, 8.
  22. Tavilla, G., Crisafulli, A., Minissale, P., Tomaselli, V., & Adamo, M. (2024). The Use of Drones for Cost-Effective Surveys in Natura 2000 Protected Areas: A Case Study on Monitoring Plant Diversity in Sicily (Italy). Land, 13(6), 804. DOI: 10.3389/fevo.2020.00157
  23. Walker, L. R., & Del Moral, R. (2003). Primary succession and ecosystem rehabilitation. Cambridge University Press. DOI: 10.3390/land13060804
PDF
  • Publication Year: 2024
  • Pages: 112-123

XML
  • Publication Year: 2024

Chapter Information

Chapter Title

Using multispectral UAV imagery and ground truthing to assess the success of vegetation reinforcement in a coastal area – the case of Inwadar National Park, Malta

Authors

Leanne Camilleri, Sandro Lanfranco

Language

Italian

DOI

10.36253/979-12-215-0556-6.09

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

Tenth International Symposium Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Book Subtitle

Livorno (Italy) 11th-13th June 2024

Editors

Laura Bonora, Marcantonio Catelani, Matteo De Vincenzi, Giorgio Matteucci

Peer Reviewed

Publication Year

2024

Copyright Information

© 2024 Author(s)

Content License

CC BY-NC-SA 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0556-6

eISBN (pdf)

979-12-215-0556-6

eISBN (xml)

979-12-215-0557-3

Series Title

Monitoring of Mediterranean Coastal Areas: Problems and Measurement Techniques

Series E-ISSN

2975-0288

0

Fulltext
downloads

0

Views

Export Citation

1,374

Open Access Books

in the Catalogue

2,545

Book Chapters

4,035,911

Fulltext
downloads

4,923

Authors

from 1036 Research Institutions

of 66 Nations

70

scientific boards

from 375 Research Institutions

of 44 Nations

1,258

Referees

from 383 Research Institutions

of 38 Nations