Contained in:
Book Chapter

Retrofitting of Buildings to Improve Energy Efficiency: A Comprehensive Systematic Literature Review and Future Research Directions

  • Elena Imani
  • Huda Dawood
  • Nashwan Dawood
  • Annalisa Occhipinti

A large body of research has been developed with the aim of assisting policymakers in setting ambitious and achievable environmental targets for the retrofit of current and future building types for energy-efficiency and in creating effective retrofit strategies to meet these targets. The aim of this research is to conduct a comprehensive study to identify the relationship between building type and sustainability, with a particular emphasis on retrofitting and try to identify research gaps in the most effective energy-saving strategies for retrofitting various types of buildings. In this regard, this study conducts a systematic literature review (SLR) utilizes artificial intelligence (AI) and natural language processing (NLP). Sixty relevant papers are selected and reviewed, establishing a comprehensive searching scheme. The research highlights retrofitting strategies for improving energy efficiency in buildings and discuss the limitations of current practises in terms of physical and technical developments, such as utilising new energy systems and innovative retrofitting materials. To overcome these, future studies could focus on in-depth building classification, developing tailored retrofitting alternatives, and establishing an adaptive solution framework. This framework aligns cohesively with diverse typologies, adapting to changing contexts and enhancing long-term performance

  • Keywords:
  • retrofitting,
  • typology of building,
  • building energy performance,
  • residential buildings,
+ Show More

Elena Imani

Teesside university, United Kingdom - ORCID: 0000-0002-7248-8864

Huda Dawood

Teesside university, United Kingdom - ORCID: 0000-0003-1032-7560

Nashwan Dawood

Teesside University, United Kingdom - ORCID: 0000-0002-4873-7576

Annalisa Occhipinti

Teesside university, United Kingdom - ORCID: 0000-0001-6075-1496

  1. Aksamija, A. (2015). Regenerative Design of Existing Buildings for Net-Zero Energy Use. Procedia Engineering, 118, 72–80. DOI: 10.1016/j.proeng.2015.08.405
  2. Alabid, J., Bennadji, A., & Seddiki, M. (2022). A review on the energy retrofit policies and improvements of the UK existing buildings, challenges and benefits. In Renewable and Sustainable Energy Reviews (Vol. 159). Elsevier Ltd. DOI: 10.1016/j.rser.2022.112161
  3. Alavirad, S., Mohammadi, S., Hoes, P. J., Xu, L., & Hensen, J. L. M. (2022). Future-Proof Energy-Retrofit strategy for an existing Dutch neighbourhood. Energy and Buildings, 260. DOI: 10.1016/j.enbuild.2022.111914
  4. Ballarini, I., Corgnati, S. P., Corrado, V., & Talà, N. (2011b). DEFINITION OF BUILDING TYPOLOGIES FOR ENERGY INVESTIGATIONS ON RESIDENTIAL SECTOR BY TABULA IEE-PROJECT: APPLICATION TO ITALIAN CASE STUDIES. https://api.semanticscholar.org/CorpusID:110911694
  5. Ballarini, I., Corrado, V., Madonna, F., Paduos, S., & Ravasio, F. (2017). Energy refurbishment of the Italian residential building stock: energy and cost analysis through the application of the building typology. Energy Policy, 105, 148–160. DOI: 10.1016/j.enpol.2017.02.026
  6. Beagon, P., Boland, F., & Saffari, M. (2020). Closing the gap between simulation and measured energy use in home archetypes. Energy and Buildings, 224. DOI: 10.1016/j.enbuild.2020.110244
  7. Becchio, C. ,Corgnati, S. P. ,Ballarini, I. ,& C. V. (2012). Energy saving potential. REHVA.
  8. Bennadji, A., Seddiki, M., Alabid, J., Laing, R., & Gray, D. (2022). Predicting Energy Savings of the UK Housing Stock under a Step-by-Step Energy Retrofit Scenario towards Net-Zero. Energies, 15(9). DOI: 10.3390/en15093082
  9. Boardman, B. (2007). Examining the carbon agenda via the 40% House scenario. Building Research and Information, 35(4), 363–378. DOI: 10.1080/09613210701238276
  10. Bouw, K., Noorman, K. J., Wiekens, C. J., & Faaij, A. (2021). Local energy planning in the built environment: An analysis of model characteristics. In Renewable and Sustainable Energy Reviews (Vol. 144). Elsevier Ltd. DOI: 10.1016/j.rser.2021.111030
  11. Carletti, C., Sciurpi, F., & Pierangioli, L. (2014). The energy upgrading of existing buildings: Window and shading device typologies for energy efficiency refurbishment. Sustainability (Switzerland), 6(8), 5354–5377. DOI: 10.3390/su6085354
  12. Coma, J., Maldonado, J. M., de Gracia, A., Gimbernat, T., Botargues, T., & Cabeza, L. F. (2019). Comparative analysis of energy demand and CO2 emissions on different typologies of residential buildings in Europe. Energies, 12(12). DOI: 10.3390/en12122436
  13. Dascalaki, E. G., Droutsa, K. G., Balaras, C. A., & Kontoyiannidis, S. (2011a). Building typologies as a tool for assessing the energy performance of residential buildings - A case study for the Hellenic building stock. Energy and Buildings, 43(12), 3400–3409. DOI: 10.1016/j.enbuild.2011.09.002
  14. Del Rosario, P., Palumbo, E., & Traverso, M. (2021). Environmental product declarations as data source for the environmental assessment of buildings in the context of level(S) and dgnb: How feasible is their adoption? Sustainability (Switzerland), 13(11). DOI: 10.3390/su13116143
  15. Fernandez-Luzuriaga, J., del Portillo-Valdes, L., & Flores-Abascal, I. (2021). Identification of cost-optimal levels for energy refurbishment of a residential building stock under different scenarios: Application at the urban scale. Energy and Buildings, 240. DOI: 10.1016/j.enbuild.2021.110880
  16. Ignjatović, D., Zeković, B., Ignjatović, N. Ć., Ðukanović, L., Radivojević, A., & Rajčić, A. (2021). Methodology for residential building stock refurbishment planning—development of local building typologies. Sustainability (Switzerland), 13(8). DOI: 10.3390/su13084262
  17. Kadrić, D., Aganovic, A., Kadrić, E., Delalić-Gurda, B., & Jackson, S. (2022). Applying the response surface methodology to predict the energy retrofit performance of the TABULA residential building stock. Journal of Building Engineering, 105307. DOI: 10.1016/j.jobe.2022.105307
  18. Kadrić, D., Aganovic, A., Martinović, S., Delalić, N., & Delalić-Gurda, B. (2022). Cost-related analysis of implementing energy-efficient retrofit measures in the residential building sector of a middle-income country – A case study of Bosnia and Herzegovina. Energy and Buildings, 257 DOI: 10.1016/j.enbuild.2021.111765
  19. Kirkegaard, P. H., & Foged, I. W. (2011). Development and Evaluation of a Responsive Building Envelope. https://api.semanticscholar.org/CorpusID:55988160}
  20. Kragh, J., & Wittchen, K. B. (2014). Development of two Danish building typologies for residential buildings. Energy and Buildings, 68(PARTA), 79–86 DOI: 10.1016/j.enbuild.2013.04.028
  21. Kristensen, M. H., & Petersen, S. (2021). District heating energy efficiency of Danish building typologies. Energy and Buildings, 231. DOI: 10.1016/j.enbuild.2020.110602
  22. Lee, J., McCuskey Shepley, M., & Choi, J. (2019). Exploring the effects of a building retrofit to improve energy performance and sustainability: A case study of Korean public buildings. Journal of Building Engineering, 25. DOI: 10.1016/j.jobe.2019.100822
  23. Li, Q., Zhang, L., Zhang, L., & Wu, X. (2021). Optimizing energy efficiency and thermal comfort in building green retrofit. Energy, 237. DOI: 10.1016/j.energy.2021.121509
  24. Li, Y., Kubicki, S., Guerriero, A., & Rezgui, Y. (2019). Review of building energy performance certification schemes towards future improvement. Renewable and Sustainable Energy Reviews, 113. DOI: 10.1016/j.rser.2019.109244
  25. Liu, T., Ma, G., & Wang, D. (2022). Pathways to Successful Building Green Retrofit Projects: Causality Analysis of Factors Affecting Decision Making. Energy and Buildings, 112486. DOI: 10.1016/j.enbuild.2022.112486
  26. Loga, T., Stein, B., & Diefenbach, N. (2016). TABULA building typologies in 20 European countries—Making energy-related features of residential building stocks comparable. Energy and Buildings, 132, 4–12. DOI: 10.1016/j.enbuild.2016.06.094
  27. Marasco, D. E., & Kontokosta, C. E. (2016). Applications of machine learning methods to identifying and predicting building retrofit opportunities. Energy and Buildings, 128, 431–441. DOI: 10.1016/j.enbuild.2016.06.092
  28. Merlet, Y., Rouchier, S., Jay, A., Cellier, N., & Woloszyn, M. (2022). Integration of phasing on multi-objective optimization of building stock energy retrofit. Energy and Buildings, 257. DOI: 10.1016/j.enbuild.2021.111776
  29. Mirzabeigi, S., & Razkenari, M. (2022). Design optimization of urban typologies: A framework for evaluating building energy performance and outdoor thermal comfort. Sustainable Cities and Society, 76. DOI: 10.1016/j.scs.2021.103515
  30. Ortiz, M., Itard, L., & Bluyssen, P. M. (2020). Indoor environmental quality related risk factors with energy-efficient retrofitting of housing: A literature review. Energy and Buildings, 221. DOI: 10.1016/j.enbuild.2020.110102
  31. Pungercar, V., Zhan, Q., Xiao, Y., Musso, F., Dinkel, A., & Pflug, T. (2021). A new retrofitting strategy for the improvement of indoor environment quality and energy efficiency in residential buildings in temperate climate using prefabricated elements. Energy and Buildings, 241. DOI: 10.1016/j.enbuild.2021.110951
  32. Re Cecconi, F., Khodabakhshian, A., & Rampini, L. (2022). Data-driven decision support system for building stocks energy retrofit policy. Journal of Building Engineering, 54. DOI: 10.1016/j.jobe.2022.104633
  33. Salehi, A., Torres, I., & Ramos, A. (2015). Computing the thermal energy performance of building by virtue of building dimensional typology. Energy Procedia, 78, 1063–1068. DOI: 10.1016/j.egypro.2015.11.029
  34. Song, S., Leng, H., Xu, H., Guo, R., & Zhao, Y. (2020). Impact of urban morphology and climate on heating energy consumption of buildings in severe cold regions. International Journal of Environmental Research and Public Health, 17(22), 1–25. DOI: 10.3390/ijerph17228354
  35. Sugár, V., Talamon, A., Horkai, A., & Kita, M. (2020). Energy saving retrofit in a heritage district: The case of the Budapest. Journal of Building Engineering, 27. DOI: 10.1016/j.jobe.2019.100982
  36. Tompkins, E. L., & Adger, W. N. (2003). Building resilience to climate change through adaptive management of natural resources. http://eprints.soton.ac.uk/id/eprint/203987
  37. Wang, Y., Qu, K., Chen, X., Gan, G., & Riffat, S. (2022). An innovative retrofit Motivation-Objective-Criteria (MOC) approach integrating homeowners’ engagement to unlocking low-energy retrofit in residential buildings. Energy and Buildings, 259. DOI: 10.1016/j.enbuild.2022.111834
  38. Webb, J., Hawkey, D., & Tingey, M. (2016). Governing cities for sustainable energy: The UK case. Cities, 54, 28–35. DOI: 10.1016/j.cities.2015.10.014
  39. Xiong, J., Yao, R., Grimmond, S., Zhang, Q., & Li, B. (2019). A hierarchical climatic zoning method for energy efficient building design applied in the region with diverse climate characteristics. Energy and Buildings, 186, 355–367. DOI: 10.1016/j.enbuild.2019.01.005
  40. Yazdi Bahri, S., Alier Forment, M., & Sanchez Riera, A. (2021). Thermal comfort improvement by applying parametric design panel as a second skin on the facade in building refurbishment in moderate climate. ACM International Conference Proceeding Series, 763–767. DOI: 10.1145/3486011.3486535
PDF
  • Publication Year: 2023
  • Pages: 1094-1104

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Retrofitting of Buildings to Improve Energy Efficiency: A Comprehensive Systematic Literature Review and Future Research Directions

Authors

Elena Imani, Huda Dawood, Nashwan Dawood, Annalisa Occhipinti

DOI

10.36253/979-12-215-0289-3.109

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

163

Fulltext
downloads

201

Views

Export Citation

1,340

Open Access Books

in the Catalogue

2,191

Book Chapters

3,790,127

Fulltext
downloads

4,399

Authors

from 923 Research Institutions

of 65 Nations

64

scientific boards

from 348 Research Institutions

of 43 Nations

1,246

Referees

from 379 Research Institutions

of 38 Nations