Contained in:
Book Chapter

Automated Extraction of Bridge Gradient from Drawings Using Deep Learning

  • Hakan Bayer
  • Benedikt Faltin
  • Markus König

Digital methods such as Building Information Modeling (BIM) can be leveraged, to improve the efficiency of maintenance planning of bridges. However, this requires digital building models, which are rarely available. Consequently, these models must be created retrospectively, which is time-consuming when done manually. Naturally, there is a great interest in the industry to automate the process of retro-digitization. This paper contributes to these efforts by proposing a multistage pipeline to automatically extract the gradient of a bridge from pixel-based construction drawings using deep learning. The bridge gradient, a key element of the structure’s axis, is critical for describing the elevation profile and axis slope. This information is implicitly contained in the longitudinal view of bridge drawings as gradient symbols. To extract this information, the well-established object detection model YOLOv5 is employed to locate the gradient symbols inside the drawings. Subsequently, EasyOCR and heuristic rules are applied to extract the relevant gradient parameters associated with each detected symbol. The extracted parameters are then exported in a machine-interpretable format to facilitate seamless integration into other applications. The results show a promising 98% accuracy in symbol detection and an overall accuracy of 70%. Consequently, the pipeline represents a significant advance in automating the retro-digitization process for existing bridges by reducing the time and effort required

  • Keywords:
  • Building Information Modeling,
  • Computer Vision,
  • Deep Learning,
  • Symbol Detection,
  • Optical Character Recognition,
  • Construction Drawings,
+ Show More

Hakan Bayer

Ruhr-University Bochum, Germany - ORCID: 0000-0002-8192-228X

Benedikt Faltin

Ruhr-University Bochum, Germany - ORCID: 0000-0003-1354-7817

Markus König

Ruhr-University Bochum, Germany - ORCID: 0000-0002-2729-7743

  1. Akanbi, T., & Zhang, J. (2022). Semi-Automated Generation of 3D Bridge Models from 2D PDF Bridge Drawings. In F. Jazizadeh, T. Shealy, & M. J. Garvin (Eds.), Construction Research Congress 2022 (pp. 1347–1354). DOI: 10.1061/9780784483961.141
  2. Baek, Y., Lee, B., Han, D., Yun, S. and Lee, H. (2019). Character Region Awareness for Text Detection. In the Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 19365-19374. DOI: 10.1109/CVPR.2019.00959
  3. Borrmann, A., König, M., Koch, C., & Beetz, J. (2018). Building Information Modeling: Why? What? How? In A. Borrmann, M. König, C. Koch & J. Beetz (Eds.), Building Information Modeling. Springer. DOI: 10.1007/978-3-319-92862-3_1
  4. Durdyev, S., Ashour, M., Connelly, S., & Mahdiyar, A. (2022). Barriers to the implementation of Building Information Modelling (BIM) for facility management. Journal of Building Engineering, 46, Article 103736. DOI: 10.1016/j.jobe.2021.103736
  5. Faltin, B., Schönfelder, P., & König, M. (2023). Inferring Interconnections of Construction Drawings for Bridges Using Deep Learning-based Methods. In E. Hjelseth, S. F. Sujan & R. J. Scherer (Eds.), ECPPM 2022-eWork and eBusiness in Architecture, Engineering and Construction 2022 (pp. 343-350). CRC Press. DOI: 10.1201/9781003354222
  6. Jocher, G., Chaurasia, A., Stoken, A., Borovec, J., Kwon, Y., Michael, K., TaoXie, Fang, J. imyhxy, Lorna, Zan Yifu, Wong, C., V, A., Montes, D., Wang, Z., Fati, C., Nadar, J., Laughing, … Jain, M. (2022). ultralytics/yolov5: v7.0 - YOLOv5 SOTA Realtime Instance Segmentation. Zenodo. DOI: 10.5281/zenodo.3908559
  7. Kim, S., Park, S., Kim, H., & Yu, K. (2021). Deep Floor Plan Analysis for Complicated Drawings Based on Style Transfer. Journal of Computing in Civil Engineering, 35(2), Article 04020066. DOI: 10.1061/(ASCE)CP.1943-5487.0000942
  8. Mafipour, M. S., Ahmed, D., Vilgertshofer, S., & Borrmann, A. (2023). Digitalization of 2D Bridge Drawings Using Deep Learning Models. The 30th EG-ICE: International Conference on Intelligent Computing in Engineering. https://www.ucl.ac.uk/bartlett/construction/sites/bartlett_
  9. construction/files/digitalization_of_2d_bridge_drawings_using_deep_learning_models.pdf
  10. Moreno-García, C. F., Elyan, E., & Jayne, C. (2019). New trends on digitisation of complex engineering drawings. Neural computing and Applications, 31, 1695-1712. DOI: 10.1007/s00521-018-3583-1
  11. Poku-Agyemang, K. N., & Reiterer, A. (2023). 3D Reconstruction from 2D Plans Exemplified by Bridge Structures. Remote Sensing, 15(3), 677. DOI: 10.3390/rs15030677
  12. Robbins, H., & Monro, S. (1951). A Stochastic Approximation Method. The Annals of Mathematical Statistics, 22(3), 400–407. http://www.jstor.org/stable/2236626
  13. Schönfelder, P., Aziz, A., Faltin, B., & König, M. (2023). Automating the retrospective generation of As-is BIM models using machine learning. Automation in Construction, 152, Article 104937. DOI: 10.1016/j.autcon.2023.104937
  14. Shi, B., Bai, X., & Yao, C. (2017). An End-to-End Trainable Neural Network for Image-Based Sequence Recognition and Its Application to Scene Text Recognition. IEEE transactions on pattern analysis and machine intelligence, 39(11), 2298–2304. DOI: 10.1109/TPAMI.2016.2646371
  15. Wei, C., Gupta, M., & Czerniawski, T. (2022). Automated Wall Detection in 2D CAD Drawings to Create Digital 3D Models. Proceedings of the 39th International Symposium on Automation and Robotics in Construction (pp. 152-158). IAARC Publications. DOI: 10.22260/ISARC2022/0023
  16. Zhao, Y., Deng, X., & Lai, H. (2020). A Deep Learning-Based Method to Detect Components from Scanned Structural Drawings for Reconstructing 3D Models. Applied Sciences, 10(6), 2066. DOI: 10.3390/app10062066
  17. Zhao, Y., Deng, X., & Lai, H. (2021). Reconstructing BIM from 2D structural drawings for existing buildings. Automation in Construction, 128, Article 103750. DOI: 10.1016/j.autcon.2021.103750
PDF
  • Publication Year: 2023
  • Pages: 683-690

XML
  • Publication Year: 2023

Chapter Information

Chapter Title

Automated Extraction of Bridge Gradient from Drawings Using Deep Learning

Authors

Hakan Bayer, Benedikt Faltin, Markus König

DOI

10.36253/979-12-215-0289-3.68

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Bibliographic Information

Book Title

CONVR 2023 - Proceedings of the 23rd International Conference on Construction Applications of Virtual Reality

Book Subtitle

Managing the Digital Transformation of Construction Industry

Editors

Pietro Capone, Vito Getuli, Farzad Pour Rahimian, Nashwan Dawood, Alessandro Bruttini, Tommaso Sorbi

Peer Reviewed

Publication Year

2023

Copyright Information

© 2023 Author(s)

Content License

CC BY-NC 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/979-12-215-0289-3

eISBN (pdf)

979-12-215-0289-3

eISBN (xml)

979-12-215-0257-2

Series Title

Proceedings e report

Series ISSN

2704-601X

Series E-ISSN

2704-5846

131

Fulltext
downloads

114

Views

Export Citation

1,339

Open Access Books

in the Catalogue

2,191

Book Chapters

3,763,352

Fulltext
downloads

4,396

Authors

from 923 Research Institutions

of 65 Nations

64

scientific boards

from 348 Research Institutions

of 43 Nations

1,246

Referees

from 379 Research Institutions

of 38 Nations