Monograph

Advanced Ground-Based Real and Synthetic Aperture Radar

  • Lapo Miccinesi,

Ground-based/terrestrial radar interferometry (GBRI) is a scientific topic of increasing interest in recent years. The GBRI is used in several field as remote sensing technique for monitoring natural environment (landslides, glacier, and mines) or infrastructures (bridges, towers). These sensors provide the displacement of targets by measuring the phase difference between sending and receiving radar signal. If the acquisition rate is enough the GBRI can provide the natural frequency, e.g. by calculating the Fourier transform of displacement. The research activity, presented in this work, concerns design and development of some advanced GBRI systems. These systems are related to the following issue: detection of displacement vector, Multiple Input Multiple Output (MIMO) and radars with 3D capability.

  • Keywords:
  • bistatic radar,
  • MIMO radar,
  • radar interferometry,
  • ground based radar,
  • three-dimensional radar,
  • radar monitoring,
+ Show more
Purchase

Lapo Miccinesi

University of Florence, Italy - ORCID: 0000-0002-7285-4588

Lapo Miccinesi received the M.S. degree in physics of particles in 2016 and the Ph.D. degree in information engineering from the University of Florence, Florence, Italy, in 2020. He is with the Department of Information Engineering, University of Florence, as a Post-Degree Grant Recipient.
  1. Aguilera, E., M. Nannini, and A. Reigber, 2013, Wavelet-based compressed sensing for SAR tomography of forested areas: IEEE Transactions on Geoscience and Remote Sensing, v. 51, no. 12, p. 5283–5295, DOI: 10.1109/TGRS.2012.2231081
  2. Antonello, G., J. Fortuny, D. Tarchi, N. Casagli, C. Del Ventisette, L. Guerri, G. Luzi, F. Mugnai, and D. Leva, 2008, Microwave interferometric sensors as a tool for space and time analysis of active volcano deformations: The Stromboli case, in 2008 Second Workshop on Use of Remote Sensing Techniques for Monitoring Volcanoes and Seismogenic Areas, Napoli, Italy: IEEE, p. 1–6, DOI: 10.1109/USEREST.2008.4740332
  3. Atzeni, C., A. Bicci, D. Dei, M. Fratini, and M. Pieraccini, 2010, Remote Survey of the Leaning Tower of Pisa by Interferometric Sensing: IEEE Geoscience and Remote Sensing Letters, v. 7, no. 1, p. 185–189, DOI: 10.1109/LGRS.2009.2030903
  4. Atzori, S., I. Hunstad, M. Chini, S. Salvi, C. Tolomei, C. Bignami, S. Stramondo, E. Trasatti, A. Antonioli, and E. Boschi, 2009, Finite fault inversion of DInSAR coseismic displacement of the 2009 L’Aquila earthquake (central Italy): Geophysical Research Letters, v. 36, no. 15, DOI: 10.1029/2009GL039293
  5. Baraniuk, R. G., 2007, Compressive Sensing [Lecture Notes]: IEEE Signal Processing Magazine, v. 24, no. 4, p. 118–121, DOI: 10.1109/MSP.2007.4286571
  6. Borgeaud, M., J. Noll, and A. Bellini, 1994, Multi-temporal comparisons of ERS-1 and JERS-1 SAR data for land applications, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 1603–1605.
  7. Broussolle, J., V. Kyovtorov, M. Basso, G. Ferraro Di Silvi E Castiglione, J. Figueiredo Morgado, R. Giuliani, F. Oliveri, P. F. Sammartino, and D. Tarchi, 2014, MELISSA, a new class of ground based InSAR system. An example of application in support to the Costa Concordia emergency: ISPRS Journal of Photogrammetry and Remote Sensing, v. 91, p. 50–58, DOI: 10.1016/j.isprsjprs.2014.02.003
  8. Bukenya, P., P. Moyo, H. Beushausen, and C. Oosthuizen, 2014, Health monitoring of concrete dams: A literature review: Journal of Civil Structural Health Monitoring, v. 4, no. 4, p. 235–244, DOI: 10.1007/s13349-014-0079-2
  9. Calvari, S., E. Intrieri, F. Di Traglia, A. Bonaccorso, N. Casagli, and A. Cristaldi, 2016, Monitoring crater-wall collapse at active volcanoes: a study of the 12 January 2013 event at Stromboli: Bulletin of Volcanology, v. 78, no. 5, p. 39, DOI: 10.1007/s00445-016-1033-4
  10. Candés, E. J., and M. B. Wakin, 2008, An introduction to compressive sampling: A sensing/sampling paradigm that goes against the common knowledge in data acquisition: IEEE Signal Processing Magazine, v. 25, no. 2, p. 21–30, DOI: 10.1109/MSP.2007.914731
  11. Carden, E. P., and P. Fanning, 2004, Vibration based condition monitoring: A review: Structural Health Monitoring, v. 3, no. 4, p. 355–377, DOI: 10.1177/1475921704047500
  12. Carlà, T., V. Tofani, L. Lombardi, F. Raspini, S. Bianchini, D. Bertolo, P. Thuegaz, and N. Casagli, 2019, Combination of GNSS, satellite InSAR, and GBInSAR remote sensing monitoring to improve the understanding of a large landslide in high alpine environment: Geomorphology, v. 335, p. 62–75, DOI: 10.1016/j.geomorph.2019.03.014
  13. Castellano, A., A. Fraddosio, F. Martorano, G. Mininno, F. Paparella, and M. D. Piccioni, 2018, Structural health monitoring of a historic masonry bell tower by radar interferometric measurements, in 2018 IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), Salerno: IEEE, p. 1–6, DOI: 10.1109/EESMS.2018.8405824
  14. Chapuis, A., C. Rolstad, and R. Norland, 2010, Interpretation of amplitude data from a ground-based radar in combination with terrestrial photogrammetry and visual observations for calving monitoring of Kronebreen, Svalbard: Annals of Glaciology, v. 51, no. 55, p. 34–40, DOI: 10.3189/172756410791392781
  15. Chui, C. K., 2016, An Introduction to Wavelets: Elsevier.
  16. Corsini, A., P. Farina, G. Antonello, M. Barbieri, N. Casagli, F. Coren, L. Guerri, F. Ronchetti, P. Sterzai, and D. Tarchi, 2006, Space-borne and ground-based SAR interferometry as tools for landslide hazard management in civil protection: International Journal of Remote Sensing, v. 27, no. 12, p. 2351–2369, DOI: 10.1080/01431160600554405
  17. Crosetto, M., O. Monserrat, G. Luzi, M. Cuevas-Gonzalez, and N. Devanthery, 2014, A noninterferometric procedure for deformation measurement using GB-SAR imagery: IEEE Geoscience and Remote Sensing Letters, v. 11, no. 1, p. 34–38, DOI: 10.1109/LGRS.2013.2245098
  18. D’Aria, D., G. Amoroso, A. Bicci, F. Coppi, M. Cecchetti, M. Rossi, and P. Falcone, 2018, Advanced tomographic tool for HYDRA radar system, in Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR: p. 484–486.
  19. Dei, D., D. Mecatti, and M. Pieraccini, 2013, Static Testing of a Bridge Using an Interferometric Radar: The Case Study of \dquotePonte degli Alpini, Belluno, Italy: The Scientific World Journal, v. 2013, p. 1–7, DOI: 10.1155/2013/504958
  20. Dei, D., M. Pieraccini, M. Fratini, C. Atzeni, and G. Bartoli, 2009, Detection of vertical bending and torsional movements of a bridge using a coherent radar: NDT and E International, v. 42, no. 8, p. 741–747, DOI: 10.1016/j.ndteint.2009.07.001
  21. Di Traglia, F. et al., 2014, The ground-based InSAR monitoring system at Stromboli volcano: Linking changes in displacement rate and intensity of persistent volcanic activity: Bulletin of Volcanology, v. 76, no. 2, p. 1–18, DOI: 10.1007/s00445-013-0786-2
  22. Di Traglia, F., T. Nolesini, A. Ciampalini, L. Solari, W. Frodella, F. Bellotti, A. Fumagalli, G. De Rosa, and N. Casagli, 2018, Tracking morphological changes and slope instability using spaceborne and ground-based SAR data: Geomorphology, v. 300, p. 95–112, \ DOI: 10.1016/j.geomorph.2017.10.023
  23. Di Traglia, F., T. Nolesini, L. Solari, et al., 2018, Lava delta deformation as a proxy for submarine slope instability: Earth and Planetary Science Letters, v. 488, p. 46–58, DOI: 10.1016/j.epsl.2018.01.038
  24. Farr, T. G. et al., 2007, The shuttle radar topography mission: Reviews of Geophysics, v. 45, no. 2, DOI: 10.1029/2005RG000183
  25. Farrar, C. R., T. W. Darling, A. Migliori, and W. E. Baker, 1999, Microwave interferometers for non-contact vibration measurements on large structures: Mechanical Systems and Signal Processing, v. 13, no. 2, p. 241–253, DOI: 10.1006/mssp.1998.1216
  26. Feng, W., J. Friedt, G. Nico, and M. Sato, 2019, 3-D Ground-Based Imaging Radar Based on C-Band Cross-MIMO Array and Tensor Compressive Sensing: IEEE Geoscience and Remote Sensing Letters, p. 1–5, DOI: 10.1109/LGRS.2019.2906077
  27. Feng, W., L. Yi, and M. Sato, 2018, Near range radar imaging based on block sparsity and cross-correlation fusion algorithm: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 11, no. 6, p. 2079–2089, DOI: 10.1109/JSTARS.2018.2797056
  28. Fortuny, J., 1998, An efficient 3-D near-field ISAR algorithm: IEEE Transactions on Aerospace and Electronic Systems, v. 34, no. 4, p. 1261–1270, \ DOI: 10.1109/7.722713
  29. Fratini, M., M. Pieraccini, C. Atzeni, M. Betti, and G. Bartoli, 2011, Assessment of vibration reduction on the Baptistery of San Giovanni in Florence (Italy) after vehicular traffic block: Journal of Cultural Heritage, v. 12, no. 3, p. 323–328, DOI: 10.1016/j.culher.2011.01.003
  30. Frodella, W., A. Ciampalini, F. Bardi, T. Salvatici, F. Di Traglia, G. Basile, and N. Casagli, 2018, A method for assessing and managing landslide residual hazard in urban areas: Landslides, v. 15, no. 2, p. 183–197, DOI: 10.1007/s10346-017-0875-y
  31. Frukacz, M., and A. Wieser, 2017, On the impact of rockfall catch fences on ground-based radar interferometry: Landslides, v. 14, no. 4, p. 1431–1440, DOI: 10.1007/s10346-017-0795-x
  32. Giordano, R., P. Guccione, G. Cifarelli, L. Mascolo, and G. Nico, 2015, Focusing SAR images by compressive sensing: Study of interferometric properties: p. 5352–5355, DOI: 10.1109/IGARSS.2015.7327044
  33. Grazzini, G., M. Pieraccini, D. Dei, and C. Atzeni, 2009, Simple microwave sensor for remote detection of structural vibration: Electronics Letters, v. 45, no. 11, p. 567, DOI: 10.1049/el.2009.1107
  34. Hadi, M. A., S. Alshebeili, K. Jamil, and F. E. A. El-Samie, 2015, Compressive sensing applied to radar systems: an overview: Signal, Image and Video Processing, v. 9, p. 25–39, DOI: 10.1007/s11760-015-0824-y
  35. Han, H., and H. Lee, 2011, Motion of Campbell glacier, east antarctica, observed by satellite and ground-based interferometric synthetic aperture radar, in 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, APSAR 2011: p. 4.
  36. Harries, N., D. Noon, H. Pritchett, and D. Bates, 2009, Slope Stability Radar for Managing Rock Fall Risks in Open Cut Mines, in roceedings of the 3rd CANUS Rock Mechanics Symposium, Toronto: p. 8.
  37. Hasch, J., E. Topak, R. Schnabel, T. Zwick, R. Weigel, and C. Waldschmidt, 2012, Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band: IEEE Transactions on Microwave Theory and Techniques, v. 60, no. 3 PART 2, p. 845–860, DOI: 10.1109/TMTT.2011.2178427
  38. He, L., and L. Carin, 2009, Exploiting structure in wavelet-based bayesian compressive sensing: IEEE Transactions on Signal Processing, v. 57, no. 9, p. 3488–3497, DOI: 10.1109/TSP.2009.2022003
  39. Hong, W., W. Tan, Y. Wang, and Y. Wu, 2010, Development and Experiments of Ground-Based SAR in IECAS for Advanced SAR Imaging Technique Validation, in EUSAR 2010: p. 4.
  40. Hu, C., J. Wang, W. Tian, T. Zeng, and R. Wang, 2017, Design and imaging of ground-based multiple-input multiple-output synthetic aperture radar (MIMO SAR) with non-collinear arrays: Sensors (Switzerland), v. 17, no. 3, DOI: 10.3390/s17030598
  41. Hu, C., Y. Deng, R. Wang, W. Tian, and T. Zeng, 2017, Two-Dimensional Deformation Measurement Based on Multiple Aperture Interferometry in Gb-SAR: IEEE Geoscience and Remote Sensing Letters, v. 14, no. 2, p. 208–212, DOI: 10.1109/LGRS.2016.2635103
  42. Huang, Q., L. Qu, B. Wu, and G. Fang, 2010, UWB through-wall imaging based on compressive sensing: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 3 PART2, p. 1408–1415, DOI: 10.1109/TGRS.2009.2030321
  43. Iannini, L., and A. Monti Guarnieri, 2011, Atmospheric phase screen in ground-based radar: Statistics and compensation: IEEE Geoscience and Remote Sensing Letters, v. 8, no. 3, p. 537–541, DOI: 10.1109/LGRS.2010.2090647
  44. Iglesias, R., X. Fabregas, A. Aguasca, J. J. Mallorqui, C. Lopez-Martinez, J. A. Gili, and J. Corominas, 2014, Atmospheric phase screen compensation in ground-based sar with a multiple-regression model over mountainous regions: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 5, p. 2436–2449, DOI: 10.1109/TGRS.2013.2261077
  45. Intrieri, E., F. Di Traglia, C. Del Ventisette, G. Gigli, F. Mugnai, G. Luzi, and N. Casagli, 2013, Flank instability of Stromboli volcano (Aeolian Islands, Southern Italy): Integration of GB-InSAR and geomorphological observations: Geomorphology, v. 201, p. 60–69, DOI: 10.1016/j.geomorph.2013.06.007
  46. Intrieri, E., G. Gigli, M. Nocentini, L. Lombardi, F. Mugnai, F. Fidolini, and N. Casagli, 2015, Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application: Geomorphology, v. 241, p. 304–314, DOI: 10.1016/j.geomorph.2015.04.018
  47. Jeffrey, T., 2009, Phased-array radar design: Application of radar fundamentals: Scitech Publishing, Phased-Array Radar Design: Application of Radar Fundamentals, DOI: 10.1049/SBRA018E
  48. Karlina, R., and M. Sato, 2011, Compressive sensing applied to imaging by ground-based polarimetric SAR: p. 2861–2864, DOI: 10.1109/IGARSS.2011.6049811
  49. Kuraoka, S., Y. Nakashima, R. Doke, and K. Mannen, 2018, Monitoring ground deformation of eruption center by ground-based interferometric synthetic aperture radar (GB-InSAR): a case study during the 2015 phreatic eruption of Hakone volcano: Earth, Planets and Space, v. 70, no. 1, p. 181, DOI: 10.1186/s40623-018-0951-0
  50. Lapo, M., and P. Massimiliano, 2019, Monostatic/Bistatic interferometric radar for monitoring slander structures, in 2019 IEEE Conference on Antenna Measurements & Applications (CAMA): IEEE.
  51. Laubie, E. E., B. D. Rigling, and R. P. Penno, 2015, Bistatic SAR image registration accuracy: p. 742–746, DOI: 10.1109/RADAR.2015.7131094
  52. Lee, H., J.-H. Lee, K.-E. Kim, N.-H. Sung, and S.-J. Cho, 2014, Development of a Truck-Mounted Arc-Scanning Synthetic Aperture Radar: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 5, p. 2773–2779, DOI: 10.1109/TGRS.2013.2265700
  53. Li, C. J., R. Bhalla, and H. Ling, 2015, Investigation of the Dynamic Radar Signatures of a Vertical-Axis Wind Turbine: IEEE Antennas and Wireless Propagation Letters, v. 14, p. 763–766, DOI: 10.1109/LAWP.2014.2377693
  54. Li, C. J., S.-T. Yang, and H. Ling, 2016, In-Situ ISAR Imaging of Wind Turbines: IEEE Transactions on Antennas and Propagation, v. 64, no. 8, p. 3587–3596, DOI: 10.1109/TAP.2016.2578306
  55. Li, J., and P. Stoica, 2007, MIMO radar with colocated antennas: IEEE Signal Processing Magazine, v. 24, no. 5, p. 106–114, DOI: 10.1109/MSP.2007.904812
  56. Lombardi, L. et al., 2017, The Calatabiano landslide (southern Italy): preliminary GB-InSAR monitoring data and remote 3D mapping: Landslides, v. 14, no. 2, p. 685–696, DOI: 10.1007/s10346-016-0767-6
  57. Lopez-Sanchez, J. M., and J. Fortuny-Guasch, 2000, 3-D radar imaging using range migration techniques: IEEE Transactions on Antennas and Propagation, v. 48, no. 5, p. 728–737, DOI: 10.1109/8.855491
  58. Lukin, K., A. Mogila, P. Vyplavin, G. Galati, and G. Pavan, 2009, Novel concepts for surface movement radar design: International Journal of Microwave and Wireless Technologies, v. 1, no. 03, p. 163, DOI: 10.1017/S1759078709000233
  59. Luo, Y., H. Song, R. Wang, Y. Deng, F. Zhao, and Z. Xu, 2014, Arc FMCW sar and applications in ground monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 52, no. 9, p. 5989–5998, DOI: 10.1109/TGRS.2014.2325905
  60. Luojus, K. P., J. T. Pulliainen, S. J. Metsämäki, and M. T. Hallikainen, 2007, Snow-covered area estimation using satellite radar wide-swath images: IEEE Transactions on Geoscience and Remote Sensing, v. 45, no. 4, p. 978–988, DOI: 10.1109/TGRS.2006.888864
  61. Luzi, G., L. Noferini, D. Mecatti, G. Macaluso, M. Pieraccini, C. Atzeni, A. Schaffhauser, R. Fromm, and T. Nagler, 2009, Using a Ground-Based SAR Interferometer and a Terrestrial Laser Scanner to Monitor a Snow-Covered Slope: Results From an Experimental Data Collection in Tyrol (Austria): IEEE Transactions on Geoscience and Remote Sensing, v. 47, no. 2, p. 382–393, DOI: 10.1109/TGRS.2008.2009994
  62. Luzi, G., M. Crosetto, and M. Cuevas-González, 2014, A radar-based monitoring of the Collserola tower (Barcelona): Mechanical Systems and Signal Processing, v. 49, no. 1, p. 234–248, DOI: 10.1016/j.ymssp.2014.04.019
  63. Luzi, G., M. Pieraccini, D. Mecatti, L. Noferini, G. Macaluso, A. Tamburini, and C. Atzeni, 2007, Monitoring of an Alpine Glacier by Means of Ground-Based SAR Interferometry: IEEE Geoscience and Remote Sensing Letters, v. 4, no. 3, p. 495–499, DOI: 10.1109/LGRS.2007.898282
  64. Ma, C., T. S. Yeo, Y. Zhao, and J. Feng, 2014, MIMO radar 3D imaging based on combined amplitude and total variation cost function with sequential order one negative exponential form: IEEE Transactions on Image Processing, v. 23, no. 5, p. 2168–2183, DOI: 10.1109/TIP.2014.2311735
  65. Martinez-Vazquez, A., and J. Fortuny-Guasch, 2008, A GB-SAR Processor for Snow Avalanche Identification: IEEE Transactions on Geoscience and Remote Sensing, v. 46, no. 11, p. 3948–3956, DOI: 10.1109/TGRS.2008.2001387
  66. Martinez-Vazquez, A., J. Fortuny-Guasch, and U. Gruber, 2005, Monitoring of the snow cover, in EARSeL eProceedings: p. 8.
  67. Massa, A., P. Rocca, and G. Oliveri, 2015, Compressive sensing in electromagnetics - A review: IEEE Antennas and Propagation Magazine, v. 57, no. 1, p. 224–238, DOI: 10.1109/MAP.2015.2397092
  68. Massonnet, D., M. Rossi, C. Carmona, F. Adragna, G. Peltzer, K. Feigl, and T. Rabaute, 1993, The displacement field of the Landers earthquake mapped by radar interferometry: Nature, v. 364, no. 6433, p. 138–142, DOI: 10.1038/364138a0
  69. Mecatti, D., L. Noferini, G. Macaluso, M. Pieraccini, G. Luzi, C. Atzeni, and A. Tamburini, 2007, Remote sensing of glacier by ground-based radar interferometry, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 4501–4504, DOI: 10.1109/IGARSS.2007.4423856
  70. Monserrat, O., M. Crosetto, and G. Luzi, 2014, A review of ground-based SAR interferometry for deformation measurement: ISPRS Journal of Photogrammetry and Remote Sensing, v. 93, p. 40–48, DOI: 10.1016/j.isprsjprs.2014.04.001
  71. Moreira, A., P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou, 2013, A tutorial on synthetic aperture radar: IEEE Geoscience and Remote Sensing Magazine, v. 1, no. 1, p. 6–43, DOI: 10.1109/MGRS.2013.2248301
  72. Munoz-Ferreras, J.-M., Z. Peng, Y. Tang, R. Gomez-Garcia, D. Liang, and C. Li, 2016, A step forward towards radar sensor networks for structural health monitoring of wind turbines, in IEEE Radio and Wireless Symposium, RWS: p. 23–25, DOI: 10.1109/RWS.2016.7444353
  73. Nico, G., G. Cifarelli, G. Miccoli, F. Soccodato, W. Feng, M. Sato, S. Miliziano, and M. Marini, 2018, Measurement of Pier Deformation Patterns by Ground-Based SAR Interferometry: Application to a Bollard Pull Trial: IEEE Journal of Oceanic Engineering, v. 43, no. 4, p. 822–829, DOI: 10.1109/RWS.2016.7444353
  74. Noferini, L., D. Mecatti, G. Macaluso, M. Pieraccini, and C. Atzeni, 2009, Monitoring of Belvedere Glacier using a wide angle GB-SAR interferometer: Journal of Applied Geophysics, v. 68, no. 2, p. 289–293, DOI: 10.1016/j.jappgeo.2009.02.004
  75. Noferini, L., M. Pieraccini, D. Mecatti, G. Luzi, C. Atzeni, A. Tamburini, and M. Broccolato, 2005, Permanent scatterers analysis for atmospheric correction in ground-based SAR interferometry: IEEE Transactions on Geoscience and Remote Sensing, v. 43, no. 7, p. 1459–1470, DOI: 10.1109/TGRS.2005.848707
  76. Noferini, L., M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso, and C. Atzeni, 2006, Ground-based radar interferometry for monitoring unstable slopes, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 4088–4091, DOI: 10.1109/IGARSS.2006.1048
  77. Noferini, L., M. Pieraccini, G. Luzi, D. Mecatti, G. Macaluso, and C. Atzeni, 2006, Ground-based radar interferometry for terrain mapping, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 2569–2572, DOI: 10.1109/IGARSS.2006.664
  78. Nolesini, T., F. Di Traglia, C. Del Ventisette, S. Moretti, and N. Casagli, 2013, Deformations and slope instability on Stromboli volcano: Integration of GBInSAR data and analog modeling: Geomorphology, v. 180–181, p. 242–254, DOI: 10.1016/j.geomorph.2012.10.014
  79. Oerlemans, J. et al., 1998, Modelling the response of glaciers to climate warming: Climate Dynamics, v. 14, no. 4, p. 267–274, DOI: 10.1007/s003820050222
  80. Pieraccini Massimiliano, M. L., Rojhani Neda, n.d., MIMO radar with dense or random pattern: analysis of phase and positioning error sensitivity, in 2019 Progress in Electromagnetics Research Symposium (PIERS-Rome).
  81. Pieraccini, M, D. Tarchi, H. Rudolf, D. Leva, G. Luzi, G. Bartoli, and C. Atzeni, 2000, Structural static testing by interferometric synthetic radar: NDT & E International, v. 33, no. 8, p. 565–570, DOI: 10.1016/S0963-8695(00)00027-X
  82. Pieraccini, M., 2013a, Monitoring of civil infrastructures by interferometric radar: A review: The Scientific World Journal, v. 2013, DOI: 10.1155/2013/786961
  83. Pieraccini, M., 2013b, Real Beam vs. Synthetic aperture radar for slope monitoring, in Progress in Electromagnetics Research Symposium: p. 1627–1632.
  84. Pieraccini, M., 2017, Extensive Measurement Campaign Using Interferometric Radar: Journal of Performance of Constructed Facilities, v. 31, no. 3, p. 04016113, DOI: 10.1061/(ASCE)CF.1943-5509.0000987
  85. Pieraccini, M., 2018, Noise Performance Comparison Between Continuous Wave and Stroboscopic Pulse Ground Penetrating Radar: IEEE Geoscience and Remote Sensing Letters, v. 15, no. 2, p. 222–226, DOI: 10.1109/LGRS.2017.2781458
  86. Pieraccini, M., and F. Papi, 2016, Design of A CW-SF Ground Penetrating Radar, in 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS): p. 7430–7433, DOI: 10.1109/IGARSS.2016.7730938
  87. Pieraccini, M., and L. Miccinesi, 2017, ArcSAR: Theory, Simulations, and Experimental Verification: IEEE Transactions on Microwave Theory and Techniques, v. 65, no. 1, p. 293–301, DOI: 10.1109/TMTT.2016.2613926
  88. Pieraccini, M., and L. Miccinesi, 2018a, Bistatic ArcSAR, in 2018 2nd URSI Atlantic Radio Science Meeting (AT-RASC): p. 1–4, DOI: 10.23919/URSI-AT-RASC.2018.8471632
  89. Pieraccini, M., and L. Miccinesi, 2018c, Bistatic ground-based synthetic aperture radar, in Proceedings of the European Conference on Synthetic Aperture Radar, EUSAR: p. 275–279.
  90. Pieraccini, M., and L. Miccinesi, 2018d, Cross-pol long-cable transponder for bistatic ground-based synthetic aperture radar: Electronics Letters, v. 54, no. 21, p. 1233–1235, DOI: 10.1049/el.2018.6081
  91. Pieraccini, M., and L. Miccinesi, 2018e, Cross-pol transponder with frequency shifter for bistatic ground-based synthetic aperture radar: Remote Sensing, v. 10, no. 9, DOI: 10.3390/rs10091364
  92. Pieraccini, M., and L. Miccinesi, 2018h, RotoSAR for monitoring bridges, in European Microwave Week 2017: “A Prime Year for a Prime Event”, EuMW 2017 - Conference Proceedings; 14th European Microwave Conference, EURAD 2017: p. 311–314, DOI: 10.23919/EURAD.2017.8249209
  93. Pieraccini, M., and L. Miccinesi, 2019a, An Interferometric MIMO Radar for Bridge Monitoring: IEEE Geoscience and Remote Sensing Letters, p. 1–5, DOI: 10.1109/LGRS.2019.2900405
  94. Pieraccini, M., and L. Miccinesi, 2019b, Ground-based radar interferometry: A bibliographic review: Remote Sensing, v. 11, no. 9, DOI: 10.3390/rs11091029
  95. Pieraccini, M., D. Dei, M. Betti, G. Bartoli, G. Tucci, and N. Guardini, 2014, Dynamic identification of historic masonry towers through an expeditious and no-contact approach: Application to the \dquoteTorre del Mangia in Siena (Italy): Journal of Cultural Heritage, v. 15, no. 3, p. 275–282, DOI: 10.1016/j.culher.2013.07.006
  96. Pieraccini, M., D. Tarchi, H. Rudolf, D. Leva, G. Luzi, and C. Atzeni, 2000, Interferometric radar for remote monitoring of building deformations: Electronics Letters, v. 36, no. 6, p. 569–570, DOI: 10.1049/el:20000475
  97. Pieraccini, M., F. Papi, and S. Rocchio, 2015, Interferometric RotoSAR: Electronics Letters, v. 51, no. 18, p. 1451–1453, DOI: 10.1049/el.2015.1785
  98. Pieraccini, M., G. Luzi, and C. Atzeni, 2001, Terrain mapping by ground-based interferometric radar: IEEE Transactions on Geoscience and Remote Sensing, v. 39, no. 10, p. 2176–2181, DOI: 10.1109/36.957280
  99. Pieraccini, M., G. Luzi, D. Mecatti, L. Noferini, and C. Atzeni, 2007, Ground-based SAR for short and long term monitoring of unstable slopes: p. 92–95, DOI: 10.1109/EURAD.2006.280281
  100. Pieraccini, M., G. Luzi, D. Mecatti, M. Fratini, L. Noferini, L. Carissimi, G. Franchioni, and C. Atzeni, 2004, Remote sensing of building structural displacements using a microwave interferometer with imaging capability: NDT and E International, v. 37, no. 7, p. 545–550, DOI: 10.1016/j.ndteint.2004.02.004
  101. PIERACCINI, M., L. MICCINESI, and N. ROJHANI, 2017, GBSAR con capacitá di acquisire immagini tridimensionali, 102017000145769.
  102. Pieraccini, M., L. Miccinesi, and N. Rojhani, 2019, Ground Based Synthetic Aperture Radar with 3D Imaging Capability, in 2019 16th European Radar Conference, EuRAD 2019.
  103. Pieraccini, M., L. Miccinesi, and N. Rojhani, n.d., Monitoring of Vespucci bridge in Florence, Italy using a fast real aperture radar and a MIMO radar, in IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium: IEEE.
  104. Pieraccini, M., L. Noferini, D. Mecatti, C. Atzeni, G. Teza, A. Galgaro, and N. Zaltron, 2006, Integration of Radar Interferometry and Laser Scanning for Remote Monitoring of an Urban Site Built on a Sliding Slope: IEEE Transactions on Geoscience and Remote Sensing, v. 44, no. 9, p. 2335–2342, DOI: 10.1109/TGRS.2006.873574
  105. Pieraccini, M., L. Noferini, D. Mecatti, G. Macaluso, G. Luzi, and C. Atzeni, 2008, Digital elevation models by a GBSAR interferometer for monitoring glaciers: The case study of Belvedere Glacier: p. IV1061–IV1064, DOI: 10.1109/IGARSS.2008.4779909
  106. Pieraccini, M., M. Betti, and P. Camelia, 2016, A METHOD AND APPARATUS FOR MONITORING SLENDER ELEMENTS BY MEANS OF DYNAMIC MEASUREMENTS OF STRUCTURAL ASYMMETRY, WO2016059462A1.
  107. Pieraccini, M., M. Fratini, D. Dei, and C. Atzeni, 2009, Structural testing of Historical Heritage Site Towers by microwave remote sensing: Journal of Cultural Heritage, v. 10, no. 2, p. 174–182, DOI: 10.1016/j.culher.2008.09.006
  108. Pieraccini, M., M. Fratini, F. Parrini, C. Atzeni, and G. Bartoli, 2008, Interferometric radar vs. accelerometer for dynamic monitoring of large structures: An experimental comparison: NDT and E International, v. 41, no. 4, p. 258–264, DOI: 10.1016/j.ndteint.2007.11.002
  109. Pieraccini, M., N. Casagli, G. Luzi, D. Tarchi, D. Mecatti, L. Noferini, and C. Atzeni, 2003, Landslide monitoring by ground-based radar interferometry: A field test in Valdarno (Italy): International Journal of Remote Sensing, v. 24, no. 6, p. 1385–1391, DOI: 10.1080/0143116021000044869
  110. Pieraccini, Massimiliano, L. Miccinesi, and N. Rojhani, 2017, A GBSAR Operating in Monostatic and Bistatic Modalities for Retrieving the Displacement Vector: IEEE Geoscience and Remote Sensing Letters, v. 14, no. 9, p. 1494–1498, DOI: 10.1109/LGRS.2017.2717857
  111. Pieraccini, Massimiliano, L. Miccinesi, and N. Rojhani, 2019, A radar with 3D imaging capability that uses synthetic aperture in azimuth and compressive sensing MIMO in elevation, in 2019 16th European Radar Conference (EuRAD): p. 65–68.
  112. Pieraccini, Massimiliano, M. Betti, D. Forcellini, D. Dei, F. Papi, G. Bartoli, L. Facchini, R. Corazzi, and V. C. Kovacevic, 2017, Radar detection of pedestrian-induced vibrations on Michelangelo’s David: PLOS ONE, v. 12, no. 4, p. e0174480, DOI: 10.1371/journal.pone.0174480
  113. Pieraccini, Massimiliano, N. Rojhani, and L. Miccinesi, 2018, Compressive Sensing for Ground Based Synthetic Aperture Radar: Remote Sensing, v. 10, no. 12, p. 1960, DOI: 10.3390/rs10121960
  114. Pipia, L., X. Fabregas, A. Aguasca, C. Lopez-Martinez, S. Duque, J. J. Mallorqui, and J. Marturia, 2009, Polarimetric Differential SAR Interferometry: First Results With Ground-Based Measurements: IEEE Geoscience and Remote Sensing Letters, v. 6, no. 1, p. 167–171, DOI: 10.1109/LGRS.2008.2009007
  115. Placidi, S., A. Meta, L. Testa, and S. Rodelsperger, 2015, Monitoring structures with FastGBSAR, in 2015 IEEE Radar Conference - Proceedings: p. 435–439, DOI: 10.1109/RadarConf.2015.7411923
  116. Pratesi, F., T. Nolesini, S. Bianchini, D. Leva, L. Lombardi, R. Fanti, and N. Casagli, 2015, Early Warning GBInSAR-Based Method for Monitoring Volterra (Tuscany, Italy) City Walls: IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, v. 8, no. 4, p. 1753–1762, DOI: 10.1109/JSTARS.2015.2402290
  117. Qian, S., and D. Chen, 1999, Joint Analysis: IEEE Signal Processing Magazine, v. 16, no. 2, p. 52–67, DOI: 10.1109/79.752051
  118. Reeves, B. A., G. F. Stickley, D. A. Noon, and I. D. Longstaff, 2000, Developments in monitoring mine slope stability using radar interferometry, in IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120), Honolulu, HI, USA: IEEE, p. 2325–2327, DOI: 10.1109/IGARSS.2000.858397
  119. Salomon, D., 2004, Data Compression: The Complete Reference: Springer Science & Business Media.
  120. Schaffhauser, A., M. Adams, R. Fromm, P. Jörg, G. Luzi, L. Noferini, and R. Sailer, 2008, Remote sensing based retrieval of snow cover properties: Cold Regions Science and Technology, v. 54, no. 3, p. 164–175, DOI: 10.1016/j.coldregions.2008.07.007
  121. Serrano-Juan, A. et al., 2016, Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain: Engineering Geology, v. 205, p. 104–115, DOI: 10.1016/j.enggeo.2016.02.014
  122. Severin, J., E. Eberhardt, L. Leoni, and S. Fortin, 2014, Development and application of a pseudo-3D pit slope displacement map derived from ground-based radar: Engineering Geology, v. 181, p. 202–211, DOI: 10.1016/j.enggeo.2014.07.016
  123. Skolnik, M. I., 1970, Radar handbook: McGraw-Hill, Incorporated.
  124. Srivastava, S. K., T. I. Lukowski, R. B. Gray, N. W. Shepherd, and R. K. Hawkins, 1996, RADARSAT: image quality management and performance results, in Canadian Conference on Electrical and Computer Engineering: p. 21–23.
  125. Tapete, D., N. Casagli, G. Luzi, R. Fanti, G. Gigli, and D. Leva, 2013, Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments: Journal of Archaeological Science, v. 40, no. 1, p. 176–189, DOI: 10.1016/j.jas.2012.07.024
  126. Tarchi, D., E. Ohlmer, and A. Sieber, 1997, Monitoring of structural changes by radar interferometry: Research in Nondestructive Evaluation, v. 9, no. 4, p. 213–225, DOI: 10.1080/09349849709414475
  127. Tarchi, D., F. Oliveri, and P. F. Sammartino, 2013, MIMO radar and ground-based SAR imaging systems: Equivalent approaches for remote sensing: IEEE Transactions on Geoscience and Remote Sensing, v. 51, no. 1, p. 425–435, DOI: 10.1109/TGRS.2012.2199120
  128. Tarchi, D., H. Rudolf, G. Luzi, L. Chiarantini, P. Coppo, and A. J. Sieber, 1999, SAR interferometry for structural changes detection: a demonstration test on a dam, in International Geoscience and Remote Sensing Symposium (IGARSS): p. 1522–1524.
  129. Tarchi, D., H. Rudolf, M. Pieraccini, and C. Atzeni, 2000, Remote monitoring of buildings using a ground-based SAR: Application to cultural heritage survey: International Journal of Remote Sensing, v. 21, no. 18, p. 3545–3551, DOI: 10.1080/014311600750037561
  130. Tarchi, D., N. Casagli, R. Fanti, D. D. Leva, G. Luzi, A. Pasuto, M. Pieraccini, and S. Silvano, 2003, Landslide monitoring by using ground-based SAR interferometry: An example of application to the Tessina landslide in Italy: Engineering Geology, v. 68, no. 1–2, p. 15–30, DOI: 10.1016/S0013-7952(02)00196-5
  131. Tropp, J. A., and A. C. Gilbert, 2007, Signal recovery from random measurements via orthogonal matching pursuit: IEEE Transactions on Information Theory, v. 53, no. 12, p. 4655–4666, DOI: 10.1109/TIT.2007.909108
  132. Viviani, F., A. Michelini, L. Mayer, and F. Conni, 2018, IBIS-ArcSAR: an Innovative Ground-Based SAR System for Slope Monitoring, in IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium: p. 1348–1351, DOI: 10.1109/IGARSS.2018.8517702
  133. Wadge, G., D. G. Macfarlane, D. A. Robertson, A. J. Hale, H. Pinkerton, R. V. Burrell, G. E. Norton, and M. R. James, 2005, AVTIS: A novel millimetre-wave ground based instrument for volcano remote sensing: Journal of Volcanology and Geothermal Research, v. 146, no. 4, p. 307–318, DOI: 10.1016/j.jvolgeores.2005.03.003
  134. Walker, J. S., 2019, A Primer on Wavelets and Their Scientific Applications: CRC Press, DOI: 10.1201/9780429129421
  135. Werner, Charles, T. Strozzi, A. Wiesmann, and U. Wegmüller, 2008, GAMMA’S PORTABLE RADAR INTERFEROMETER, in 13th FIG Symposium on Deformation Measurement Analysis, Lisbon, Portugal: p. 10.
  136. Wickerhauser, M. V., 1996, Adapted Wavelet Analysis : From Theory to Software: A K Peters/CRC Press, DOI: 10.1201/9781439863619.B129:B137
  137. Xie, S., T. H. Dixon, D. Voytenko, D. M. Holland, D. Holland, and T. Zheng, 2016, Precursor motion to iceberg calving at Jakobshavn Isbræ, Greenland, observed with terrestrial radar interferometry: Journal of Glaciology, v. 62, no. 236, p. 1134–1142, DOI: 10.1017/jog.2016.104
  138. Yang, A. Y., S. S. Sastry, A. Ganesh, and Y. Ma, 2010, Fast l1-minimization algorithms and an application in robust face recognition: A review: p. 1849–1852, DOI: 10.1109/ICIP.2010.5651522
  139. Yigit, E., S. Demirci, A. Unal, C. Ozdemir, and A. Vertiy, 2012, Millimeter-wave ground-based synthetic aperture radar imaging for foreign object debris detection: Experimental studies at short ranges: Journal of Infrared, Millimeter, and Terahertz Waves, v. 33, no. 12, p. 1227–1238, DOI: 10.1007/s10762-012-9938-2
  140. Zeng, T., C. Mao, C. Hu, X. Yang, and W. Tian, 2015, Multi-static MIMO-SAR three dimensional deformation measurement system, in 2015 IEEE 5th Asia-Pacific Conference on Synthetic Aperture Radar (APSAR), Singapore, Singapore: IEEE, p. 297–301, DOI: 10.1109/APSAR.2015.7306212
  141. Zhang, X., B.-Y. Lu, Q. Song, and M. Leng, 2011, Atmospheric disturbance correction in Ground-Based SAR differential interferometry, in Proceedings of 2011 IEEE CIE International Conference on Radar, RADAR 2011: p. 1574–1577, DOI: 10.1109/CIE-Radar.2011.6159864
  142. Zheng-Shu Zhou, W.-M. Boerner, and M. Sato, 2004, Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 42, no. 9, p. 1803–1810, DOI: 10.1109/TGRS.2004.832248
  143. Zhou, S.-G., P.-K. Tan, and T.-H. Chio, 2012, Low-profile, wideband dual-polarized antenna with high isolation and low cross polarization: IEEE Antennas and Wireless Propagation Letters, v. 11, p. 1032–1035, DOI: 10.1109/LAWP.2012.2215299
  144. Zhou, Z.-S., W.-M. Boerner, and M. Sato, 2004, Development of a ground-based polarimetric broadband SAR system for noninvasive ground-truth validation in vegetation monitoring: IEEE Transactions on Geoscience and Remote Sensing, v. 42, no. 9, p. 1803–1810, DOI: 10.1109/TGRS.2004.832248
  145. Zhu, X. X., and R. Bamler, 2010, Tomographic SAR inversion by L1-norm regularization-the compressive sensing approach: IEEE Transactions on Geoscience and Remote Sensing, v. 48, no. 10, p. 3839–3846, DOI: 10.1109/TGRS.2010.2048117
  146. Zonno, M., 2014, GBSAR data focusing based on compressive sensing: p. 347–350.
PDF
  • Publication Year: 2021
  • Pages: 144
  • eISBN: 978-88-5518-377-2
  • Content License: CC BY 4.0
  • © 2021 Author(s)

XML
  • Publication Year: 2021
  • Pages: 144
  • eISBN: 978-88-5518-378-9
  • Content License: CC BY 4.0
  • © 2021 Author(s)

PRINT
  • Publication Year: 2021
  • Pages: 144
  • ISBN: 978-88-5518-376-5
  • Content License: CC BY 4.0
  • © 2021 Author(s)

Bibliographic Information

Book Title

Advanced Ground-Based Real and Synthetic Aperture Radar

Authors

Lapo Miccinesi

Peer Reviewed

Number of Pages

144

Publication Year

2021

Copyright Information

© 2021 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/978-88-5518-377-2

ISBN Print

978-88-5518-376-5

eISBN (pdf)

978-88-5518-377-2

eISBN (xml)

978-88-5518-378-9

Series Title

Premio Tesi di Dottorato

Series ISSN

2612-8039

Series E-ISSN

2612-8020

697

Fulltext
downloads

939

Views

Search in This Book
Export Citation
Suggested Books

1,361

Open Access Books

in the Catalogue

2,368

Book Chapters

3,870,371

Fulltext
downloads

4,536

Authors

from 943 Research Institutions

of 66 Nations

67

scientific boards

from 357 Research Institutions

of 43 Nations

1,249

Referees

from 381 Research Institutions

of 38 Nations