Monograph

New insights into creatine transporter deficiency

Identification of neuropathological and metabolic targets for treatment
  • Angelo Molinaro,

Creatine (Cr) transporter deficiency (CCDS1) is a very rare and severe condition due to impaired energetic metabolism. In this work we showed for the first time the following facts: this diseases is a progressive neurodegenerative disorder in which a set of maladaptive compensatory mechanisms leads to a progressive damage of brain functions; cell energy metabolism and mitochondria seem strongly involved in the pathogenesis and they could represent useful potential targets for therapeutic interventions; inflammation seems to play an important part in this progressive damage, and this observation can pave the way to treatment strategies; neural circuits disruption involving inhibitory systems could give a huge contribute to many of the clinical aspects observed in patients, as epilepsy and cognitive impairment, since the excitatory/inhibitory balance is fundamental for the normal function of neural circuits. Factors outside the CNS are important in the pathogenesis of at least some aspects of the disorder, since the conditional KO model show difference in the timing of onset of some cognitive defects and in the presence of stereotypies.

  • Keywords:
  • creatine,
  • transporter,
  • brain,
+ Show more
Purchase

Angelo Molinaro

Università di Firenze - ORCID: 0000-0003-1690-5448

Angelo Molinaro earned an MD at University of Pisa in 2009 (cum laude) and subsequently the title of Specialist in Endocrinology and Metabolic disorders (cum laude, at University of Pisa). He was Research Fellow at Harvard Medical School and Massachusetts General Hospital, with Prof. Jüppner studying the molecular genetics of rare endocrine diseases. He worked at the Free University of Bruxelles in the lab of the Prof. Sabine Costagliola studying the cellular and molecular embryology of early thyroid development. Subsequently, earned a PhD in Neuroscience (with distinction) at the University of Florence in the lab of Prof. Tommaso Pizzorusso (Institute of Neuroscience, CNR in Pisa) and in Paris at the Institute for Brain and Spinal Cord affiliated to Sorbonne Université with Prof. Alberto Bacci and Prof. Laurence Cathala.
  1. Ahmed, Z., Sheng, H., Xu, Y., Lin, W.-L., Innes, A. E., Gass, J., Yu, X., Hou, H., Chiba, S., Yamanouchi, K., Leissring, M., Petrucelli, L., Nishihara, M., Hutton, M. L., McGowan, E., Dickson, D. W., Lewis, J. and Lewis, J. (2010) ‘Accelerated Lipofuscinosis and Ubiquitination in Granulin Knockout Mice Suggest a Role for Progranulin in Successful Aging’, The American Journal of Pathology, 177(1), pp. 311–324. .
  2. Alcaide, P., Merinero, B., Ruiz-Sala, P., Richard, E., Navarrete, R., Arias, Á., Ribes, A., Artuch, R., Campistol, J., Ugarte, M. and Rodríguez-Pombo, P. (2011) ‘Defining the pathogenicity of creatine deficiency syndrome’, Human Mutation. Wiley-Blackwell, 32(3), pp. 282–291.
  3. Alessandrì, M. G., Celati, L., Battini, R., Casarano, M. and Cioni, G. (2005) ‘Gas chromatography/mass spectrometry assay for arginine: Glycine-amidinotransferase deWciency’, ANALYTICAL BIOCHEMISTRY, 343, pp. 356–358.
  4. Almeida, L. S., Salomons, G. S., Hogenboom, F., Jakobs, C. and Schoffelmeer, A. N. M. (2006) ‘Exocytotic release of creatine in rat brain.’, Synapse (New York, N.Y.), 60(2), pp. 118–23.
  5. Andres, R. H., Ducray, A. D., Schlattner, U., Wallimann, T. and Widmer, H. R. (2008) ‘Functions and effects of creatine in the central nervous system.’, Brain research bulletin, 76(4), pp. 329–43.
  6. Anselm, I. M., Alkuraya, F. S., Salomons, G. S., Jakobs, C., Fulton, A. B., Mazumdar, M., Rivkin, M., Frye, R., Poussaint, T. Y., Marsden, D. and Marsden, D. (2006) ‘X-linked creatine transporter defect: A report on two unrelated boys with a severe clinical phenotype’, Journal of Inherited Metabolic Disease, 29(1), pp. 214–219.
  7. Assunção, M., Santos-Marques, M. J., Carvalho, F., Lukoyanov, N. V. and Andrade, J. P. (2011) ‘Chronic green tea consumption prevents age-related changes in rat hippocampal formation’, Neurobiology of Aging, 32(4), pp. 707–717.
  8. Balsom, P. D., Söderlund, K. and Ekblom, B. (1994) ‘Creatine in humans with special reference to creatine supplementation.’, Sports medicine (Auckland, N.Z.), 18(4), pp. 268–80.
  9. Bamburg, J. R. and Bernstein, B. W. (2016) ‘Actin dynamics and cofilin-actin rods in alzheimer disease’, Cytoskeleton, 73(9), pp. 477–497.
  10. Bano, D., Agostini, M., Melino, G. and Nicotera, P. (2011) ‘Ageing, Neuronal Connectivity and Brain Disorders: An Unsolved Ripple Effect’, Molecular Neurobiology, 43(2), pp. 124–130.
  11. Baroncelli, L., Alessandrì, M. G., Tola, J., Putignano, E., Migliore, M., Amendola, E., Gross, C., Leuzzi, V., Cioni, G. and Pizzorusso, T. (2014) ‘A novel mouse model of creatine transporter deficiency.’, F1000Research, 3(0), p. 228.
  12. Bartsch, T. and Wulff, P. (2015) ‘The hippocampus in aging and disease: From plasticity to vulnerability’, Neuroscience, 309, pp. 1–16.
  13. Beck, H., Flynn, K., Lindenberg, K. S., Schwarz, H., Bradke, F., Di Giovanni, S. and Knoll, B. (2012) ‘Serum Response Factor (SRF)-cofilin-actin signaling axis modulates mitochondrial dynamics’, Proceedings of the National Academy of Sciences, 109(38), pp. E2523–E2532.
  14. Bender, A., Beckers, J., Schneider, I., Hölter, S. M., Haack, T., Ruthsatz, T., Vogt-Weisenhorn, D. M., Becker, L., Genius, J., Rujescu, D., Irmler, M., Mijalski, T., Mader, M., Quintanilla-Martinez, L., Fuchs, H., Gailus-Durner, V., de Angelis, M. H., Wurst, W., Schmidt, J. and Klopstock, T. (2008) ‘Creatine improves health and survival of mice’, Neurobiology of Aging, 29(9), pp. 1404–1411.
  15. Betsalel, O. T., Pop, A., Rosenberg, E. H., Fernandez-Ojeda, M., Creatine Transporter Research, Group, C., Jakobs, C. and Salomons, G. S. (2012) ‘Detection of variants in SLC6A8 and functional analysis of unclassified missense variants.’, Molecular genetics and metabolism, 105(4), pp. 596–601.
  16. Bizzi, A., Bugiani, M., Salomons, G. S., Hunneman, D. H., Moroni, I., Estienne, M., Danesi, U., Jakobs, C. and Uziel, G. (2002) ‘X-linked creatine deficiency syndrome: A novel mutation in creatine transporter geneSLC6A8’, Annals of Neurology, 52(2), pp. 227–231.
  17. Bories, C., Husson, Z., Guitton, M. J. and De Koninck, Y. (2013) ‘Differential balance of prefrontal synaptic activity in successful versus unsuccessful cognitive aging.’, The Journal of neuroscience : the official journal of the Society for Neuroscience, 33(4), pp. 1344–56.
  18. Braissant, O., Cagnon, L., Monnet-Tschudi, F., Speer, O., Wallimann, T., Honegger, P. and Henry, H. (2008) ‘Ammonium alters creatine transport and synthesis in a 3D culture of developing brain cells, resulting in secondary cerebral creatine deficiency’, European Journal of Neuroscience, 27(7), pp. 1673–1685.
  19. Braissant, O., Henry, H., Loup, M., Eilers, B. and Bachmann, C. (2001) ‘Endogenous synthesis and transport of creatine in the rat brain: an in situ hybridization study.’, Brain research. Molecular brain research, 86(1–2), pp. 193–201.
  20. Braissant, O., Henry, H., Villard, A.-M., Speer, O., Wallimann, T. and Bachmann, C. (2005) ‘Creatine synthesis and transport during rat embryogenesis: spatiotemporal expression of AGAT, GAMT and CT1.’, BMC Developmental Biology, 5(1), p. 9.
  21. Brandenstein, L., Schweizer, M., Sedlacik, J., Fiehler, J. and Storch, S. (2016) ‘Lysosomal dysfunction and impaired autophagy in a novel mouse model deficient for the lysosomal membrane protein Cln7’, Human Molecular Genetics, 25(4), pp. 777–791.
  22. Brosnan, J. T. and Brosnan, M. E. (2007) ‘Creatine: Endogenous Metabolite, Dietary, and Therapeutic Supplement’, Annual Review of Nutrition, 27(1), pp. 241–261.
  23. Brynczka, C. and Merrick, B. A. (2008) ‘The p53 transcriptional target gene wnt7b contributes to NGF-inducible neurite outgrowth in neuronal PC12 cells’, Differentiation, 76(7), pp. 795–808.
  24. Carducci, C., Carducci, C., Santagata, S., Adriano, E., Artiola, C., Thellung, S., Gatta, E., Robello, M., Florio, T., Antonozzi, I., Leuzzi, V. and Balestrino, M. (2012) ‘In vitro study of uptake and synthesis of creatine and its precursors by cerebellar granule cells and astrocytes suggests some hypotheses on the physiopathology of the inherited disorders of creatine metabolism.’, BMC neuroscience. BioMed Central, 13, p. 41.
  25. Chanutin, A. (1926) ‘Tha fate of creatine when administered to man’, The Journal of biological chemistry, (2).
  26. Chen, B. and Wang, Y. (2015) ‘Cofilin rod formation in neurons impairs neuronal structure and function.’, CNS & neurological disorders drug targets, 14(4), pp. 554–60.
  27. Chilosi, A., Casarano, M., Comparini, A., Battaglia, F., Mancardi, M., Schiaffino, C., Tosetti, M., Leuzzi, V., Battini, R. and Cioni, G. (2012) ‘Neuropsychological profile and clinical effects of arginine treatment in children with creatine transport deficiency’, Orphanet Journal of Rare Diseases, 7(1), p. 43.
  28. Chilosi, A., Leuzzi, V., Battini, R., Tosetti, M., Ferretti, G., Comparini, A., Casarano, M., Moretti, E., Alessandri, M. G., Bianchi, M. C. and Cioni, G. (2008) ‘Treatment with L-arginine improves neuropsychological disorders in a child with creatine transporter defect.’, Neurocase, 14(2), pp. 151–61.
  29. Choe, C., Nabuurs, C., Stockebrand, M. C., Neu, A., Nunes, P., Morellini, F., Sauter, K., Schillemeit, S., Hermans-Borgmeyer, I., Marescau, B., Heerschap, A. and Isbrandt, D. (2013) ‘l-arginine:glycine amidinotransferase deficiency protects from metabolic syndrome’, Human Molecular Genetics. Oxford University Press, 22(1), pp. 110–123.
  30. Christian, K. M., Song, H. and Ming, G. (2014) ‘Functions and Dysfunctions of Adult Hippocampal Neurogenesis’, Annual Review of Neuroscience, 37(1), pp. 243–262.
  31. Ciregia, F., Bugliani, M., Ronci, M., Giusti, L., Boldrini, C., Mazzoni, M. R., Mossuto, S., Grano, F., Cnop, M., Marselli, L., Giannaccini, G., Urbani, A., Lucacchini, A. and Marchetti, P. (2017) ‘Palmitate-induced lipotoxicity alters acetylation of multiple proteins in clonal β cells and human pancreatic islets.’, Scientific reports, 7(1), p. 13445.
  32. Ciregia, F., Giusti, L., Da Valle, Y., Donadio, E., Consensi, A., Giacomelli, C., Sernissi, F., Scarpellini, P., Maggi, F., Lucacchini, A. and Bazzichi, L. (2013) ‘A multidisciplinary approach to study a couple of monozygotic twins discordant for the chronic fatigue syndrome: a focus on potential salivary biomarkers’, Journal of Translational Medicine, 11(1), p. 243.
  33. deGrauw, T. J., Cecil, K. M., Byars, A. W., Salomons, G. S., Ball, W. S. and Jakobs, C. (2003) ‘The clinical syndrome of creatine transporter deficiency.’, Molecular and cellular biochemistry, 244(1–2), pp. 45–8.
  34. Depino, A. M. (2013) ‘Peripheral and central inflammation in autism spectrum disorders’, Molecular and Cellular Neuroscience, 53, pp. 69–76
  35. Di Giovanni, S. and Rathore, K. (2012) ‘p53-dependent pathways in neurite outgrowth and axonal regeneration’, Cell and Tissue Research, 349(1), pp. 87–95.
  36. di Salvo, M. L., Mastrangelo, M., Nogués, I., Tolve, M., Paiardini, A., Carducci, C., Mei, D., Montomoli, M., Tramonti, A., Guerrini, R., Contestabile, R. and Leuzzi, V. (2017) ‘Pyridoxine-5’-phosphate oxidase (Pnpo) deficiency: Clinical and biochemical alterations associated with the C.347g>A (P.·Arg116gln) mutation.’, Molecular genetics and metabolism. Elsevier, 122(1–2), pp. 135–142.
  37. Diaz-Beltran, L., Esteban, F. J. and Wall, D. P. (2016) ‘A common molecular signature in ASD gene expression: following Root 66 to autism’, Translational Psychiatry. Nature Publishing Group, 6(1), pp. e705–e705
  38. Dodd, J. R., Birch, N. P., Waldvogel, H. J. and Christie, D. L. (2010) ‘Functional and immunocytochemical characterization of the creatine transporter in rat hippocampal neurons.’, Journal of neurochemistry, 115(3), pp. 684–93.
  39. Dunlop, R. A., Brunk, U. T. and Rodgers, K. J. (2009) ‘Oxidized proteins: Mechanisms of removal and consequences of accumulation’, IUBMB Life, pp. 522–527.
  40. Ebadi, M. and Klangkalya, B. (1979) ‘On the mechanism of pyridoxal phosphate-related convulsions as implicated in enhanced transport of GABA.’, Neuropharmacology, 18(3), pp. 301–7.
  41. Edvardson, S., Korman, S. H., Livne, A., Shaag, A., Saada, A., Nalbandian, R., Allouche-Arnon, H., Gomori, J. M. and Katz-Brull, R. (2010) ‘l-arginine:glycine amidinotransferase (AGAT) deficiency: Clinical presentation and response to treatment in two patients with a novel mutation’, Molecular Genetics and Metabolism, 101(2–3), pp. 228–232.
  42. Enrico, A., Patrizia, G., Luisa, P., Alessandro, P., Gianluigi, L., Carlo, G. and Maurizio, B. (2013) ‘Electrophysiology and biochemical analysis of cyclocreatine uptake and effect in hippocampal slices’, Journal of Integrative Neuroscience, 12(02), pp. 285–297.
  43. Etherton, M. R., Blaiss, C. A., Powell, C. M. and Sudhof, T. C. (2009) ‘Mouse neurexin-1 deletion causes correlated electrophysiological and behavioral changes consistent with cognitive impairments’, Proceedings of the National Academy of Sciences, 106(42), pp. 17998–18003.
  44. Evangeliou, A., Vasilaki, K., Karagianni, P. and Nikolaidis, N. (2009) ‘Clinical applications of creatine supplementation on paediatrics.’, Current pharmaceutical biotechnology, 10(7), pp. 683–90.
  45. Fons, C., Arias, A., Sempere, A., Póo, P., Pineda, M., Mas, A., López-Sala, A., Garcia-Villoria, J., Vilaseca, M. A., Ozaez, L., Lluch, M., Artuch, R., Campistol, J. and Ribes, A. (2010) ‘Response to creatine analogs in fibroblasts and patients with creatine transporter deficiency’, Molecular Genetics and Metabolism, 99(3), pp. 296–299.
  46. Franceschi, C., Bonafè, M., Valensin, S., Olivieri, F., De Luca, M., Ottaviani, E. and De Benedictis, G. (2006) ‘Inflamm-aging: An Evolutionary Perspective on Immunosenescence’, Annals of the New York Academy of Sciences. Wiley/Blackwell (10.1111), 908(1), pp. 244–254.
  47. Fuccillo, M. V. (2016) ‘Striatal Circuits as a Common Node for Autism Pathophysiology’, Frontiers in Neuroscience, 10, p. 27
  48. García-Delgado, M., Peral, M. J., Cano, M., Calonge, M. L. and Ilundáin, A. A. (2001) ‘Creatine transport in brush-border membrane vesicles isolated from rat kidney cortex.’, Journal of the American Society of Nephrology : JASN, 12(9), pp. 1819–25.
  49. Giusti, S. A., Vercelli, C. A., Vogl, A. M., Kolarz, A. W., Pino, N. S., Deussing, J. M. and Refojo, D. (2014) ‘Behavioral phenotyping of Nestin-Cre mice: Implications for genetic mouse models of psychiatric disorders’, Journal of Psychiatric Research, 55, pp. 87–95.
  50. Gori, Z., De Tata, V., Pollera, M. and Bergamini, E. (1988) ‘Mitochondrial myopathy in rats fed with a diet containing beta-guanidine propionic acid, an inhibitor of creatine entry in muscle cells.’, British journal of experimental pathology. Wiley-Blackwell, 69(5), pp. 639–50.
  51. Gospe, S. M., Olin, K. L. and Keen, C. L. (1994) ‘Reduced GABA synthesis in pyridoxine-dependent seizures.’, Lancet (London, England), 343(8906), pp. 1133–4.
  52. Grissom, N. M., McKee, S. E., Schoch, H., Bowman, N., Havekes, R., O’Brien, W. T., Mahrt, E., Siegel, S., Commons, K., Portfors, C., Nickl-Jockschat, T., Reyes, T. M. and Abel, T. (2018) ‘Male-specific deficits in natural reward learning in a mouse model of neurodevelopmental disorders’, Molecular Psychiatry, 23(3), pp. 544–555.
  53. Guimbal, C. and Kilimann, M. W. (1993) ‘A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression.’, The Journal of biological chemistry, 268(12), pp. 8418–21.
  54. Haffernan, C. (2015) Creatine: a short history
  55. Hathaway, S. C., Friez, M., Limbo, K., Parker, C., Salomons, G. S., Vockley, J., Wood, T. and Abdul-Rahman, O. A. (2010) ‘X-Linked Creatine Transporter Deficiency Presenting as a Mitochondrial Disorder’, Journal of Child Neurology, 25(8), pp. 1009–1012.
  56. Head, E., Lott, I. T., Wilcock, D. M. and Lemere, C. A. (2016) ‘Aging in Down Syndrome and the Development of Alzheimer’s Disease Neuropathology.’, Current Alzheimer research, 13(1), pp. 18–29.
  57. Hefendehl, J. K., Neher, J. J., Sühs, R. B., Kohsaka, S., Skodras, A. and Jucker, M. (2014) ‘Homeostatic and injury-induced microglia behavior in the aging brain’, Aging Cell. Wiley/Blackwell (10.1111), 13(1), pp. 60–69.
  58. Hoffmann, H. and Schiene-Fischer, C. (2014) ‘Functional aspects of extracellular cyclophilins’, Biological Chemistry, 395(7–8), pp. 721–35.
  59. Höhn, A. and Grune, T. (2013) ‘Lipofuscin: formation, effects and role of macroautophagy.’, Redox biology. Elsevier, 1(1), pp. 140–4.
  60. Ippolito, D. M. and Eroglu, C. (2010) ‘Quantifying Synapses: an Immunocytochemistry-based Assay to Quantify Synapse Number’, Journal of Visualized Experiments, (45)
  61. Ishioka, N., Sato, J., Nakamura, J., Ohkubo, T., Takeda, A. and Kurioka, S. (1995) ‘In vivo modification of GABAA receptor with a high dose of pyridoxal phosphate induces tonic-clonic convulsion in immature mice.’, Neurochemistry international, 26(4), pp. 369–73.
  62. Item, C. B., Stöckler-Ipsiroglu, S., Stromberger, C., Mühl, A., Alessandrì, M. G., Bianchi, M. C., Tosetti, M., Fornai, F. and Cioni, G. (2001) ‘Arginine:Glycine Amidinotransferase Deficiency: The Third Inborn Error of Creatine Metabolism in Humans’, The American Journal of Human Genetics, 69(5), pp. 1127–1133.
  63. Iyer, G. S., Krahe, R., Goodwin, L. A., Doggett, N. A., Siciliano, M. J., Funanage, V. L. and Proujansky, R. (1996) ‘Identification of a testis-expressed creatine transporter gene at 16p11.2 and confirmation of the X-linked locus to Xq28.’, Genomics, 34(1), pp. 143–6
  64. Joncquel-Chevalier Curt, M., Voicu, P. M., Fontaine, M., Dessein, A. F., Porchet, N., Mention-Mulliez, K., Dobbelaere, D., Soto-Ares, G., Cheillan, D. and Vamecq, J. (2015) ‘Creatine biosynthesis and transport in health and disease’, Biochimie, 119, pp. 146–165.
  65. Kaidanovich-Beilin, O., Lipina, T., Vukobradovic, I., Roder, J. and Woodgett, J. R. (2011) ‘Assessment of Social Interaction Behaviors’, Journal of Visualized Experiments, (48).
  66. Kalkman, H. O. (2012) ‘Potential opposite roles of the extracellular signal-regulated kinase (ERK) pathway in autism spectrum and bipolar disorders’, Neuroscience & Biobehavioral Reviews, 36(10), pp. 2206–2213.
  67. Kempermann, G. (2015) ‘Activity Dependency and Aging in the Regulation of Adult Neurogenesis’, Cold Spring Harbor Perspectives in Biology, 7(11), p. a018929.
  68. Kopra, O., Vesa, J., von Schantz, C., Manninen, T., Minye, H., Fabritius, A.-L., Rapola, J., Diggelen, O. P. van, Saarela, J., Jalanko, A. and Peltonen, L. (2004) ‘A mouse model for Finnish variant late infantile neuronal ceroid lipofuscinosis, CLN5, reveals neuropathology associated with early aging’, Human Molecular Genetics, 13(23), pp. 2893–2906
  69. Kristensen, A. S., Andersen, J., Jørgensen, T. N., Sørensen, L., Eriksen, J., Loland, C. J., Strømgaard, K. and Gether, U. (2011) ‘SLC6 neurotransmitter transporters: structure, function, and regulation.’, Pharmacological reviews, 63(3), pp. 585–640.
  70. Kuiper, J. W., Oerlemans, F. T., Fransen, J. A. and Wieringa, B. (2008) ‘Creatine kinase B deficient neurons exhibit an increased fraction of motile mitochondria’, BMC Neuroscience, 9(1), p. 73
  71. Kurosawa, Y., DeGrauw, T. J., Lindquist, D. M., Blanco, V. M., Pyne-Geithman, G. J., Daikoku, T., Chambers, J. B., Benoit, S. C. and Clark, J. F. (2012) ‘Cyclocreatine treatment improves cognition in mice with creatine transporter deficiency’, Journal of Clinical Investigation, 122(8), pp. 2837–2846.
  72. Lahiri, D. K., Sokol, D. K., Erickson, C., Ray, B., Ho, C. Y. and Maloney, B. (2013) ‘Autism as early neurodevelopmental disorder: evidence for an sAPPα-mediated anabolic pathway’, Frontiers in Cellular Neuroscience, 7.
  73. Lawler, J. M., Barnes, W. S., Wu, G., Song, W. and Demaree, S. (2002) ‘Direct Antioxidant Properties of Creatine’, Biochemical and Biophysical Research Communications, 290(1), pp. 47–52.
  74. Lee, S. W., Clemenson, G. D. and Gage, F. H. (2012) ‘New neurons in an aged brain’, Behavioural Brain Research, 227(2), pp. 497–507.
  75. Leuzzi, V., Alessandrì, M. G., Casarano, M., Battini, R. and Cioni, G. (2008) ‘Arginine and glycine stimulate creatine synthesis in creatine transporter 1-deficient lymphoblasts’, Analytical Biochemistry, 375(1), pp. 153–155.
  76. Leuzzi, V., Bianchi, M. C., Tosetti, M., Carducci, C., Cerquiglini, C. A., Cioni, G. and Antonozzi, I. (2000) ‘Brain creatine depletion: guanidinoacetate methyltransferase deficiency (improving with creatine supplementation).’, Neurology, 55(9), pp. 1407–9.
  77. Leuzzi, V., Mastrangelo, M., Battini, R. and Cioni, G. (2013) ‘Inborn errors of creatine metabolism and epilepsy’, Epilepsia, 54(2), pp. 217–227.
  78. Levillain, O., Marescau, B. and Deyn, P. P. de (1995) ‘Guanidino compound metabolism in rats subjected to 20% to 90% nephrectomy’, Kidney International. Elsevier, 47(2), pp. 464–472.
  79. Li, H., Thali, R. F., Smolak, C., Gong, F., Alzamora, R., Wallimann, T., Scholz, R., Pastor-Soler, N. M., Neumann, D. and Hallows, K. R. (2010) ‘Regulation of the creatine transporter by AMP-activated protein kinase in kidney epithelial cells.’, American journal of physiology. Renal physiology. American Physiological Society, 299(1), pp. F167-77.
  80. Lipton, J. O. and Sahin, M. (2014) ‘The Neurology of mTOR’, Neuron. Elsevier Inc., 84(2), pp. 275–291.
  81. Loike, J. D., Zalutsky, D. L., Kaback, E., Miranda, A. F. and Silverstein, S. C. (1988) ‘Extracellular creatine regulates creatine transport in rat and human muscle cells.’, Proceedings of the National Academy of Sciences of the United States of America, 85(3), pp. 807–11
  82. Lonetti, G., Angelucci, A., Morando, L., Boggio, E. M., Giustetto, M. and Pizzorusso, T. (2010) ‘Early Environmental Enrichment Moderates the Behavioral and Synaptic Phenotype of MeCP2 Null Mice’, Biological Psychiatry, 67(7), pp. 657–665.
  83. Lunardi, G., Parodi, A., Perasso, L., Pohvozcheva, A. V., Scarrone, S., Adriano, E., Florio, T., Gandolfo, C., Cupello, A., Burov, S. V. and Balestrino, M. (2006) ‘The creatine transporter mediates the uptake of creatine by brain tissue, but not the uptake of two creatine-derived compounds’, Neuroscience, 142(4), pp. 991–997.
  84. Maccarinelli, F., Pagani, A., Cozzi, A., Codazzi, F., Di Giacomo, G., Capoccia, S., Rapino, S., Finazzi, D., Politi, L. S., Cirulli, F., Giorgio, M., Cremona, O., Grohovaz, F. and Levi, S. (2015) ‘A novel neuroferritinopathy mouse model (FTL 498InsTC) shows progressive brain iron dysregulation, morphological signs of early neurodegeneration and motor coordination deficits’, Neurobiology of Disease, 81, pp. 119–133.
  85. Matt, S. M. and Johnson, R. W. (2016) ‘Neuro-immune dysfunction during brain aging: new insights in microglial cell regulation’, Current Opinion in Pharmacology, 26, pp. 96–101.
  86. Matthews, R. T., Ferrante, R. J., Klivenyi, P., Yang, L., Klein, A. M., Mueller, G., Kaddurah-Daouk, R. and Beal, M. F. (1999) ‘Creatine and Cyclocreatine Attenuate MPTP Neurotoxicity’, Experimental Neurology, 157(1), pp. 142–149.
  87. McFarlane, H. G., Kusek, G. K., Yang, M., Phoenix, J. L., Bolivar, V. J. and Crawley, J. N. (2008) ‘Autism-like behavioral phenotypes in BTBR T+tf/J mice’, Genes, Brain and Behavior, 7(2), pp. 152–163.
  88. McQuail, J. A., Frazier, C. J. and Bizon, J. L. (2015) ‘Molecular aspects of age-related cognitive decline: the role of GABA signaling’, Trends in Molecular Medicine, 21(7), pp. 450–460.
  89. Mercimek-Mahmutoglu, S., Connolly, M. B., Poskitt, K. J., Horvath, G. A., Lowry, N., Salomons, G. S., Casey, B., Sinclair, G., Davis, C., Jakobs, C. and Stockler-Ipsiroglu, S. (2010) ‘Treatment of intractable epilepsy in a female with SLC6A8 deficiency’, Molecular Genetics and Metabolism, 101(4), pp. 409–412.
  90. Mercimek-Mahmutoglu, S., Stoeckler-Ipsiroglu, S., Adami, A., Appleton, R., Araujo, H. C., Duran, M., Ensenauer, R., Fernandez-Alvarez, E., Garcia, P., Grolik, C., Item, C. B., Leuzzi, V., Marquardt, I., Muhl, A., Saelke-Kellermann, R. A., Salomons, G. S., Schulze, A., Surtees, R., van der Knaap, M. S., Vasconcelos, R., Verhoeven, N. M., Vilarinho, L., Wilichowski, E. and Jakobs, C. (2006) ‘GAMT deficiency: Features, treatment, and outcome in an inborn error of creatine synthesis’, Neurology, 67(3), pp. 480–484.
  91. Moy, S. S., Nadler, J. J., Perez, A., Barbaro, R. P., Johns, J. M., Magnuson, T. R., Piven, J. and Crawley, J. N. (2004) ‘Sociability and preference for social novelty in five inbred strains: an approach to assess autistic-like behavior in mice’, Genes, Brain and Behavior, 3(5), pp. 287–302.
  92. Nabuurs, C. I., Choe, C. U., Veltien, A., Kan, H. E., van Loon, L. J. C., Rodenburg, R. J. T., Matschke, J., Wieringa, B., Kemp, G. J., Isbrandt, D. and Heerschap, A. (2013) ‘Disturbed energy metabolism and muscular dystrophy caused by pure creatine deficiency are reversible by creatine intake’, The Journal of Physiology, 591(2), pp. 571–592.
  93. Nash, S. R., Giros, B., Kingsmore, S. F., Rochelle, J. M., Suter, S. T., Gregor, P., Seldin, M. F. and Caron, M. G. (1994) ‘Cloning, pharmacological characterization, and genomic localization of the human creatine transporter.’, Receptors & channels, 2(2), pp. 165–74.
  94. Ndika, J. D. T., Johnston, K., Barkovich, J. A., Wirt, M. D., O’Neill, P., Betsalel, O. T., Jakobs, C. and Salomons, G. S. (2012) ‘Developmental progress and creatine restoration upon long-term creatine supplementation of a patient with arginine:glycine amidinotransferase deficiency’, Molecular Genetics and Metabolism, 106(1), pp. 48–54.
  95. Nicolas, M. and Hassan, B. A. (2014) ‘Amyloid precursor protein and neural development’, Development, 141(13), pp. 2543–2548.
  96. Nigro, P., Pompilio, G. and Capogrossi, M. C. (2013) ‘Cyclophilin A: a key player for human disease’, Cell Death & Disease, 4(10), pp. e888–e888.
  97. Nota, B., Ndika, J. D. T., van de Kamp, J. M., Kanhai, W. A., van Dooren, S. J. M., van de Wiel, M. A., Pals, G. and Salomons, G. S. (2014) ‘RNA Sequencing of Creatine Transporter (SLC6A8) Deficient Fibroblasts Reveals Impairment of the Extracellular Matrix’, Human Mutation, 35(9), pp. 1128–1135
  98. Nouioua, S., Cheillan, D., Zaouidi, S., Salomons, G. S., Amedjout, N., Kessaci, F., Bou-lahdour, N., Hamadouche, T. and Tazir, M. (2013) ‘Creatine deficiency syndrome. A treatable myopathy due to arginine–glycine amidinotransferase (AGAT) defi-ciency’, Neuromuscular Disorders, 23(8), pp. 670–674.
  99. O’Gorman, E., Beutner, G., Dolder, M., Koretsky, A. P., Brdiczka, D. and Wallimann, T. (1997) ‘The role of creatine kinase in inhibition of mitochondrial permeability transition’, FEBS Letters. No longer published by Elsevier, 414(2), pp. 253–257.
  100. Papale, A., d’Isa, R., Menna, E., Cerovic, M., Solari, N., Hardingham, N., Cambiaghi, M., Cursi, M., Barbacid, M., Leocani, L., Fasano, S., Matteoli, M. and Brambilla, R. (2017) ‘Severe Intellectual Disability and Enhanced Gamma-Aminobutyric Acidergic Synaptogenesis in a Novel Model of Rare RASopathies’, Biological Psychiatry, 81(3), pp. 179–192.
  101. Peral, M. J., Vázquez-Carretero, M. D. and Ilundain, A. A. (2010) ‘Na+/Cl−/creatine transporter activity and expression in rat brain synaptosomes’, Neuroscience, 165(1), pp. 53–60.
  102. Perasso, L., Adriano, E., Ruggeri, P., Burov, S. V., Gandolfo, C. and Balestrino, M. (2009) ‘In vivo neuroprotection by a creatine-derived compound: Phosphocreatine–Mg-complex acetate’, Brain Research, 1285, pp. 158–163.
  103. Perasso, L., Cupello, A., Lunardi, G. L., Principato, C., Gandolfo, C. and Balestrino, M. (2003) ‘Kinetics of creatine in blood and brain after intraperitoneal injection in the rat.’, Brain research, 974(1–2), pp. 37–42.
  104. Perna, M. K., Kokenge, A. N., Miles, K. N., Udobi, K. C., Clark, J. F., Pyne-Geithman, G. J., Khuchua, Z. and Skelton, M. R. (2016) ‘Creatine transporter deficiency leads to increased whole body and cellular metabolism’, Amino Acids. Springer Vienna.
  105. Póo-Argüelles, P., Arias, A., Vilaseca, M. A., Ribes, A., Artuch, R., Sans-Fito, A., Moreno, A., Jakobs, C. and Salomons, G. (2006) ‘X-Linked creatine transporter deficiency in two patients with severe mental retardation and autism’, Journal of Inherited Metabolic Disease, 29(1), pp. 220–223.
  106. Pucilowska, J., Vithayathil, J., Pagani, M., Kelly, C., Karlo, J. C., Robol, C., Morella, I., Gozzi, A., Brambilla, R. and Landreth, G. E. (2018) ‘Pharmacological Inhibition of ERK Signaling Rescues Pathophysiology and Behavioral Phenotype Associated with 16p11.2 Chromosomal Deletion in Mice’, The Journal of Neuroscience, 38(30), pp. 6640–6652.
  107. Pucilowska, J., Vithayathil, J., Tavares, E. J., Kelly, C., Karlo, J. C. and Landreth, G. E. (2015) ‘The 16p11.2 Deletion Mouse Model of Autism Exhibits Altered Cortical Progenitor Proliferation and Brain Cytoarchitecture Linked to the ERK MAPK Pathway’, Journal of Neuroscience, 35(7), pp. 3190–3200.
  108. Puusepp, H., Kall, K., Salomons, G. S., Talvik, I., Männamaa, M., Rein, R., Jakobs, C. and Õunap, K. (2010) ‘The screening of SLC6A8 deficiency among Estonian families with X-linked mental retardation.’, Journal of inherited metabolic disease, 33 Suppl 3, pp. S5-11.
  109. Pyne-Geithman, G. J., deGrauw, T. J., Cecil, K. M., Chuck, G., Lyons, M. A., Ishida, Y. and Clark, J. F. (2004) ‘Presence of normal creatine in the muscle of a patient with a mutation in the creatine transporter: a case study.’, Molecular and cellular biochemistry, 262(1–2), pp. 35–9.
  110. Rao, J. S., Kellom, M., Kim, H.-W., Rapoport, S. I. and Reese, E. A. (2012) ‘Neuroinflammation and Synaptic Loss’, Neurochemical Research, 37(5), pp. 903–910.
  111. Ratto, G. M. and Pizzorusso, T. (2006) ‘A Kinase with a Vision’, in Brain Repair. Boston, MA: Springer US, pp. 122–132.
  112. Ray, B., Long, J. M., Sokol, D. K. and Lahiri, D. K. (2011) ‘Increased Secreted Amyloid Precursor Protein-α (sAPPα) in Severe Autism: Proposal of a Specific, Anabolic Pathway and Putative Biomarker’, PLoS ONE. Edited by A. I. Bush, 6(6), p. e20405.
  113. Rothwell, P. E., Fuccillo, M. V., Maxeiner, S., Hayton, S. J., Gokce, O., Lim, B. K., Fowler, S. C., Malenka, R. C. and Südhof, T. C. (2014) ‘Autism-Associated Neuroligin-3 Mutations Commonly Impair Striatal Circuits to Boost Repetitive Behaviors’, Cell, 158(1), pp. 198–212
  114. Russell, A. P., Ghobrial, L., Wright, C. R., Lamon, S., Brown, E. L., Kon, M., Skelton, M. R. and Snow, R. J. (2014) ‘Creatine transporter (SLC6A8) knockout mice display an increased capacity for in vitro creatine biosynthesis in skeletal muscle’, Frontiers in Physiology. Frontiers, 5, p. 314
  115. Ryan, S. M. and Nolan, Y. M. (2016) ‘Neuroinflammation negatively affects adult hippocampal neurogenesis and cognition: can exercise compensate?’, Neuroscience & Biobehavioral Reviews, 61, pp. 121–131
  116. Salomons, G. S., van Dooren, S. J. M., Verhoeven, N. M., Cecil, K. M., Ball, W. S., Degrauw, T. J. and Jakobs, C. (2001) ‘X-Linked Creatine-Transporter Gene (SLC6A8) Defect: A New Creatine-Deficiency Syndrome’, The American Journal of Human Genetics, 68(6), pp. 1497–1500.
  117. Saunders, A., Macosko, E., Wysoker, A., Goldman, M., Krienen, F., Bien, E., Baum, M., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N., Brumbaugh, S., Kulp, D. and McCarroll, S. A. (2018) ‘A Single-Cell Atlas of Cell Types, States, and Other Transcriptional Patterns from Nine Regions of the Adult Mouse Brain’, bioRxiv. Cold Spring Harbor Laboratory, p. 299081
  118. Schiaffino, M. C., Bellini, C., Costabello, L., Caruso, U., Jakobs, C., Salomons, G. S. and Bonioli, E. (2005) ‘X-linked creatine transporter deficiency’, Neurogenetics, 6(3), pp. 165–168.
  119. Sestili, P., Martinelli, C., Colombo, E., Barbieri, E., Potenza, L., Sartini, S. and Fimognari, C. (2011) ‘Creatine as an antioxidant’, Amino Acids, 40(5), pp. 1385–1396.
  120. Shaw, A. E. and Bamburg, J. R. (2017) ‘Peptide regulation of cofilin activity in the CNS: A novel therapeutic approach for treatment of multiple neurological disorders’, Pharmacology & Therapeutics, 175, pp. 17–27.
  121. Sherwin, E., Dinan, T. G. and Cryan, J. F. (2018) ‘Recent developments in understanding the role of the gut microbiota in brain health and disease’, Annals of the New York Academy of Sciences, 1420(1), pp. 5–25
  122. Shetty, A. K. and Turner, D. A. (1998) ‘Hippocampal interneurons expressing glutamic acid decarboxylase and calcium-binding proteins decrease with aging in Fischer 344 rats.’, The Journal of comparative neurology, 394(2), pp. 252–69.
  123. Shi, L., Argenta, A. E., Winseck, A. K. and Brunso-Bechtold, J. K. (2004) ‘Stereological quantification of GAD-67-immunoreactive neurons and boutons in the hippocampus of middle-aged and old Fischer 344 × Brown Norway rats’, Journal of Comparative Neurology, 478(3), pp. 282–291.
  124. Sierra, A., Beccari, S., Diaz-Aparicio, I., Encinas, J. M., Comeau, S. and Tremblay, M.-È. (2014) ‘Surveillance, Phagocytosis, and Inflammation: How Never-Resting Microglia Influence Adult Hippocampal Neurogenesis’, Neural Plasticity, 2014, pp. 1–15
  125. Silingardi, D., Angelucci, A., De Pasquale, R., Borsotti, M., Squitieri, G., Brambilla, R., Putignano, E., Pizzorusso, T. and Berardi, N. (2011) ‘ERK pathway activation bidirectionally affects visual recognition memory and synaptic plasticity in the perirhinal cortex.’, Frontiers in behavioral neuroscience. Frontiers Media SA, 5, p. 84.
  126. Skelton, M. R., Schaefer, T. L., Graham, D. L., deGrauw, T. J., Clark, J. F., Williams, M. T. and Vorhees, C. V. (2011) ‘Creatine Transporter (CrT; Slc6a8) Knockout Mice as a Model of Human CrT Deficiency’, PLoS ONE. Edited by E. M. C. Skoulakis. Public Library of Science, 6(1), p. e16187.
  127. Stöckler, S., Hanefeld, F. and Frahm, J. (1996) ‘Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism.’, Lancet (London, England), 348(9030), pp. 789–90.
  128. Stöckler, S., Holzbach, U., Hanefeld, F., Marquardt, I., Helms, G., Requart, M., Hänicke, W. and Frahm, J. (1994) ‘Creatine deficiency in the brain: a new, treatable inborn error of metabolism.’, Pediatric research, 36(3), pp. 409–413.
  129. Sullivan, P. G., Geiger, J. D., Mattson, M. P. and Scheff, S. W. (2000) ‘Dietary supplement creatine protects against traumatic brain injury.’, Annals of neurology, 48(5), pp. 723–9.
  130. Terman, A. and Brunk, U. T. (2006) ‘Oxidative Stress, Accumulation of Biological “Garbage”, and Aging’, Antioxidants & Redox Signaling, 8(1–2), pp. 197–204.
  131. Thomas, G. M. and Huganir, R. L. (2004) ‘MAPK cascade signalling and synaptic plasticity’, Nature Reviews Neuroscience, 5(3), pp. 173–183.
  132. Torremans, A., Marescau, B., Possemiers, I., Van Dam, D., D’Hooge, R., Isbrandt, D. and De Deyn, P. P. (2005) ‘Biochemical and behavioural phenotyping of a mouse model for GAMT deficiency’, Journal of the Neurological Sciences, 231(1–2), pp. 49–55
  133. Tronche, F., Kellendonk, C., Kretz, O., Gass, P., Anlag, K., Orban, P. C., Bock, R., Klein, R. and Schütz, G. (1999) ‘Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety’, Nature Genetics, 23(1), pp. 99–103.
  134. Udobi, K. C., Kokenge, A. N., Hautman, E. R., Ullio, G., Coene, J., Williams, M. T., Vorhees, C. V., Mabondzo, A. and Skelton, M. R. (2018) ‘Cognitive deficits and increases in creatine precursors in a brain-specific knockout of the creatine transporter gene Slc6a8’, Genes, Brain and Behavior, 17(6), p. e12461.
  135. van de Kamp, J. M., Jakobs, C., Gibson, K. M. and Salomons, G. S. (2013) ‘New insights into creatine transporter deficiency: the importance of recycling creatine in the brain’, Journal of Inherited Metabolic Disease, 36(1), pp. 155–156.
  136. van de Kamp, J. M., Mancini, G. M. and Salomons, G. S. (2014) ‘X-linked creatine transporter deficiency: clinical aspects and pathophysiology’, Journal of Inherited Metabolic Disease, 37(5), pp. 715–733.
  137. van de Kamp, J., Betsalel, O. T., Mercimek-Mahmutoglu, S., Abulhoul, L., Grünewald, S., Anselm, I., Azzouz, H., Bratkovic, D., de Brouwer, A., Hamel, B., Kleefstra, T., Yntema, H., Campistol, J., Vilaseca, M. A., Cheillan, D., D’Hooghe, M., Diogo, L., Garcia, P., Valongo, C., Fonseca, M., Frints, S., Wilcken, B., von der Haar, S., Meijers-Heijboer, H. E., Hofstede, F., Johnson, D., Kant, S. G., Lion-Francois, L., Pitelet, G., Longo, N., Maat-Kievit, J. A., Monteiro, J. P., Munnich, A., Muntau, A. C., Nassogne, M. C., Osaka, H., Ounap, K., Pinard, J. M., Quijano-Roy, S., Poggenburg, I., Poplawski, N., Abdul-Rahman, O., Ribes, A., Arias, A., Yaplito-Lee, J., Schulze, A., Schwartz, C. E., Schwenger, S., Soares, G., Sznajer, Y., Valayannopoulos, V., Van Esch, H., Waltz, S., Wamelink, M. M. C., Pouwels, P. J. W., Errami, A., van der Knaap, M. S., Jakobs, C., Mancini, G. M. and Salomons, G. S. (2013) ‘Phenotype and genotype in 101 males with X-linked creatine transporter deficiency’, Journal of Medical Genetics, 50(7), pp. 463–472.
  138. van de Kamp, J., Errami, A., Howidi, M., Anselm, I., Winter, S., Phalin-Roque, J., Osaka, H., van Dooren, S. J. M., Mancini, G. M., Steinberg, S. J. and Salomons, G. S. (2015) ‘Genotype-phenotype correlation of contiguous gene deletions of SLC6A8, BCAP31 and ABCD1’, Clinical Genetics, 87(2), pp. 141–147.
  139. van de Kamp, J., Mancini, G., Pouwels, P., Betsalel, O., van Dooren, S., de Koning, I., Steenweg, M., Jakobs, C., van der Knaap, M. and Salomons, G. (2011) ‘Clinical features and X-inactivation in females heterozygous for creatine transporter defect’, Clinical Genetics. Wiley/Blackwell (10.1111), 79(3), pp. 264–272.
  140. van de Kap, J. M., Pouwels, P. J. W., Aarsen, F. K., ten Hoopen, L. W., Knol, D. L., de Klerk, J. B., de Coo, I. F., Huijmans, J. G. M., Jakobs, C., van der Knaap, M. S., Salomons, G. S. and Mancini, G. M. S. (2012) ‘Long-term follow-up and treatment in nine boys with X-linked creatine transporter defect.’, Journal of inherited metabolic disease. Springer, 35(1), pp. 141–9.
  141. Vanderklish, P. W. and Edelman, G. M. (2002) ‘Dendritic spines elongate after stimulation of group 1 metabotropic glutamate receptors in cultured hippocampal neurons.’, Proceedings of the National Academy of Sciences of the United States of America. National Academy of Sciences, 99(3), pp. 1639–44
  142. Vela, J., Gutierrez, A., Vitorica, J. and Ruano, D. (2003) ‘Rat hippocampal GABAergic molecular markers are differentially affected by ageing.’, Journal of neurochemistry, 85(2), pp. 368–77.
  143. von Bernhardi, R., Eugenín-von Bernhardi, L. and Eugenín, J. (2015) ‘Microglial cell dysregulation in brain aging and neurodegeneration’, Frontiers in Aging Neuroscience, 7, p. 124.
  144. Walker, J. B. (1979) ‘Creatine: biosynthesis, regulation, and function.’, Advances in enzymology and related areas of molecular biology, 50, pp. 177–242.
  145. Wang, H.-S. and Kuo, M.-F. (2007) ‘Vitamin B6 related epilepsy during childhood.’, Chang Gung medical journal, 30(5), pp. 396–401.
  146. Woo, J. A., Zhao, X., Khan, H., Penn, C., Wang, X., Joly-Amado, A., Weeber, E., Morgan, D. and Kang, D. E. (2015) ‘Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers’, Cell Death & Differentiation, 22(6), pp. 921–934.
  147. Wyss, M. and Kaddurah-Daouk, R. (2000) ‘Creatine and Creatinine Metabolism’, Physiological reviews, 80(3), pp. 1107–1213.
  148. Xu, D., Zhu, J., Jeong, S., Li, D., Hua, X., Huang, L., Zhang, J., Luo, Y. and Xia, Q. (2018) ‘Rictor Deficiency Aggravates Hepatic Ischemia/Reperfusion Injury in Mice by Suppressing Autophagy and Regulating MAPK Signaling’, Cellular Physiology and Biochemistry, 45(6), pp. 2199–2212.
  149. Yizhar, O., Fenno, L. E., Prigge, M., Schneider, F., Davidson, T. J., O’Shea, D. J., Sohal, V. S., Goshen, I., Finkelstein, J., Paz, J. T., Stehfest, K., Fudim, R., Ramakrishnan, C., Huguenard, J. R., Hegemann, P. and Deisseroth, K. (2011) ‘Neocortical excitation/inhibition balance in information processing and social dysfunction’, Nature. Nature Publishing Group, 477(7363), pp. 171–178.
  150. Zervou, S., Whittington, H. J., Russell, A. J. and Lygate, C. A. (2016) ‘Augmentation of Creatine in the Heart.’, Mini reviews in medicinal chemistry, 16(1), pp. 19–28.
  151. Zhu, X., Lee, H., Raina, A. K., Perry, G. and Smith, M. A. (2002) ‘The Role of Mitogen-Activated Protein Kinase Pathways in Alzheimer’s Disease’, Neurosignals, 11(5), pp. 270–281.
PDF
  • Publication Year: 2020
  • Pages: 116
  • eISBN: 978-88-5518-082-5
  • Content License: CC BY 4.0
  • © 2020 Author(s)

XML
  • Publication Year: 2020
  • eISBN: 978-88-5518-083-2
  • Content License: CC BY 4.0
  • © 2020 Author(s)

PRINT
  • Publication Year: 2020
  • Pages: 116
  • eISBN: 978-88-5518-081-8
  • Content License: CC BY 4.0
  • © 2020 Author(s)

Bibliographic Information

Book Title

New insights into creatine transporter deficiency

Book Subtitle

Identification of neuropathological and metabolic targets for treatment

Authors

Angelo Molinaro

Peer Reviewed

Number of Pages

116

Publication Year

2020

Copyright Information

© 2020 Author(s)

Content License

CC BY 4.0

Metadata License

CC0 1.0

Publisher Name

Firenze University Press

DOI

10.36253/978-88-5518-082-5

ISBN Print

978-88-5518-081-8

eISBN (pdf)

978-88-5518-082-5

eISBN (xml)

978-88-5518-083-2

Series Title

Premio Tesi di Dottorato

Series Issn

2612-8039

Series E-Issn

2612-8020

263

Fulltext
downloads

489

Views

Search in This Book
Export Citation
Suggested Books

1,226

Open Access Books

in the Catalogue

1,155

Book Chapters

2,106,745

Fulltext
downloads

3,144

Authors

from 649 Research Institutions

of 55 Nations

55

scientific boards

from 307 Research Institutions

of 39 Nations

787

Referees

from 180 Research Institutions

of 31 Nations